The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distanc...The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
The paper introduces some technology for training, simulation, restoration expert system of power grid, the structure of the system including function composition, hardware and software composition are discussed, know...The paper introduces some technology for training, simulation, restoration expert system of power grid, the structure of the system including function composition, hardware and software composition are discussed, knowledge representation and the method to establish device graphical library for expert system are given, the fault setting and diagnosis for training and simulation as well as restoration technology with deep first searching arithmetic and heuristic inference are presented. The research provides a good base for developing the training, simulation, restoration system of power companies.展开更多
The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stres...The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stressed in studying the value of its application by realizing it in MMS.展开更多
In order to testify and examine the ability and correctness of an expert system for diagnosing the faults in the electrical power system of a certain kind of satellite, the authors have developed a simulated testbed a...In order to testify and examine the ability and correctness of an expert system for diagnosing the faults in the electrical power system of a certain kind of satellite, the authors have developed a simulated testbed according to the operational principle of the electrical power system. This paper takes the solar battery array as an instance to introduce the designing principle of its hardware circuits, and presents the methods to design the interface and the software program of the single-chip microprocessor system. The software scheme of the upper computer is introduced at the end of this paper. It has been proved that this simulated system could effectively achieve the complete functions coupled with the simple design by using of various mature techniques in the fields of electronic circuits, single-chip microprocessor and numerical emulation.展开更多
Based on the low inductance technology and parallel-plate transmission principle,an experimental apparatus of small-scale slapper initiating primary high explosives driven by electrical explosion is designed and estab...Based on the low inductance technology and parallel-plate transmission principle,an experimental apparatus of small-scale slapper initiating primary high explosives driven by electrical explosion is designed and established.The problem of instantaneously and continuously measuring the velocity of the small-scale slapper is successfully solved by using the technique of laser interference.Compared with the results published on the literatures at home and abroad,data of the experimental and the numerical simulation shown in this paper are more proper to reflect the physical process of electrical explosion driving slapper.One-dimensional numerical simulation of electrical explosion driving slapper is done using the hydrodynamic code.The experimental results are consistent with the computed ones by introducing a power correction factor.In the end,the introduced power correction factor is discussed.展开更多
文摘The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
基金TheKeyProblemTacklingProjectinHunanProvince! (No .Izf 9831)
文摘The paper introduces some technology for training, simulation, restoration expert system of power grid, the structure of the system including function composition, hardware and software composition are discussed, knowledge representation and the method to establish device graphical library for expert system are given, the fault setting and diagnosis for training and simulation as well as restoration technology with deep first searching arithmetic and heuristic inference are presented. The research provides a good base for developing the training, simulation, restoration system of power companies.
文摘The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stressed in studying the value of its application by realizing it in MMS.
文摘In order to testify and examine the ability and correctness of an expert system for diagnosing the faults in the electrical power system of a certain kind of satellite, the authors have developed a simulated testbed according to the operational principle of the electrical power system. This paper takes the solar battery array as an instance to introduce the designing principle of its hardware circuits, and presents the methods to design the interface and the software program of the single-chip microprocessor system. The software scheme of the upper computer is introduced at the end of this paper. It has been proved that this simulated system could effectively achieve the complete functions coupled with the simple design by using of various mature techniques in the fields of electronic circuits, single-chip microprocessor and numerical emulation.
基金Sponsored by the Foundation of Institute of Fluid Physics of China Academy of Engineering Physics
文摘Based on the low inductance technology and parallel-plate transmission principle,an experimental apparatus of small-scale slapper initiating primary high explosives driven by electrical explosion is designed and established.The problem of instantaneously and continuously measuring the velocity of the small-scale slapper is successfully solved by using the technique of laser interference.Compared with the results published on the literatures at home and abroad,data of the experimental and the numerical simulation shown in this paper are more proper to reflect the physical process of electrical explosion driving slapper.One-dimensional numerical simulation of electrical explosion driving slapper is done using the hydrodynamic code.The experimental results are consistent with the computed ones by introducing a power correction factor.In the end,the introduced power correction factor is discussed.