A new method of prefetching data blocks from the NVCache to the page cache in main memory and cascading prefetching n-blocks from a hard disk to the NVCache together was proposed to reduce the spin-up frequency of a h...A new method of prefetching data blocks from the NVCache to the page cache in main memory and cascading prefetching n-blocks from a hard disk to the NVCache together was proposed to reduce the spin-up frequency of a hybrid hard disk drive and thus enhance I/O performance.The proposed method consists of three steps:1) Analyzing the pattern of read requests in block units;2) Determining the number of blocks prefetched to the NVCache;3) Replacing blocks in the NVCache according to the block replacement policy.The proposed method can reduce the latency time of a hybrid hard disk and optimize the power consumption of an IPTV set-top box.Experimental results show that the proposed method provides better average response time compared to an existing adaptive multistream prefetching(AMP) method by 25.17%.It also reduces by 20.83% the average power consumption over that of the existing external caching in energy saving storage system(EXCES) method.展开更多
In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the r...In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the redundant, turn on the demanded" strategy here. Firstly, a green cloud computing model is presented, abstracting the task scheduling problem to the virtual machine deployment issue with the virtualization technology. Secondly, the future workloads of system need to be predicted: a cubic exponential smoothing algorithm based on the conservative control(CESCC) strategy is proposed, combining with the current state and resource distribution of system, in order to calculate the demand of resources for the next period of task requests. Then, a multi-objective constrained optimization model of power consumption and a low-energy resource allocation algorithm based on probabilistic matching(RA-PM) are proposed. In order to reduce the power consumption further, the resource allocation algorithm based on the improved simulated annealing(RA-ISA) is designed with the improved simulated annealing algorithm. Experimental results show that the prediction and conservative control strategy make resource pre-allocation catch up with demands, and improve the efficiency of real-time response and the stability of the system. Both RA-PM and RA-ISA can activate fewer hosts, achieve better load balance among the set of high applicable hosts, maximize the utilization of resources, and greatly reduce the power consumption of cloud computing systems.展开更多
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con...The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).展开更多
Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for...Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for reducing power consumption and generating large yield stress. Finite element analysis was performed to analyze magnetic field distribution, based on which a prototype MR cell was fabricated and tested to investigate the performance of various combinations of individual input currents. A good correlation was identified between experimental results and FEA predications. The results show that the power consumption can be reduced to 42.4%, maintaining large transmission torque, by distributing the total current(2 A) to three individual magnetic coils. In addition, optimal results of four input currents considering a multi-objective function are obtained by changing the weighting factor λ. The advantage of this design, such as lower power consumption and more control flexibility, makes it more competitive in engineering applications that require large energy consumption.展开更多
5G baseband signal processing places greater real-time and reliability requirements on hardware.Based on the architecture of the MaPU,a reconfigurable computing architecture is proposed according to the characteristic...5G baseband signal processing places greater real-time and reliability requirements on hardware.Based on the architecture of the MaPU,a reconfigurable computing architecture is proposed according to the characteristics of the 5G baseband signal processing.A dedicated instruction set for 5G baseband signal processing is proposed.The corresponding functional units are designed for reuse of hardware resources.A redirected register file is proposed to address latency and power consumption issues in internetwork.A two-dimensional code compression scheme is proposed for cases in which the use ratio of instruction memory is low.The access mode of the data memory is extended,the performance is improved and the power consumption is reduced.The throughput of 5G baseband processing algorithm is one to two orders of magnitude higher than that of the TMS320C6670 with less power consumption.The silicon area evaluated by layout is 5.8 mm2,which is 1/6 of the MaPU’s.The average power consumption is 0.7 W,which is 1/5 of the MaPU’s.展开更多
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m...Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.展开更多
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0004114)in part by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology in part by the MKE (The Ministry of Knowledge Economy), Korea, under the CITRC (Convergence Information Technology Research Center) support program (NIPA-2012-C6150-1201-0001) supervised by the NIPA (National IT Industry Promotion Agency)
文摘A new method of prefetching data blocks from the NVCache to the page cache in main memory and cascading prefetching n-blocks from a hard disk to the NVCache together was proposed to reduce the spin-up frequency of a hybrid hard disk drive and thus enhance I/O performance.The proposed method consists of three steps:1) Analyzing the pattern of read requests in block units;2) Determining the number of blocks prefetched to the NVCache;3) Replacing blocks in the NVCache according to the block replacement policy.The proposed method can reduce the latency time of a hybrid hard disk and optimize the power consumption of an IPTV set-top box.Experimental results show that the proposed method provides better average response time compared to an existing adaptive multistream prefetching(AMP) method by 25.17%.It also reduces by 20.83% the average power consumption over that of the existing external caching in energy saving storage system(EXCES) method.
基金supported by the National Natural Science Foundation of China(6147219261202004)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the redundant, turn on the demanded" strategy here. Firstly, a green cloud computing model is presented, abstracting the task scheduling problem to the virtual machine deployment issue with the virtualization technology. Secondly, the future workloads of system need to be predicted: a cubic exponential smoothing algorithm based on the conservative control(CESCC) strategy is proposed, combining with the current state and resource distribution of system, in order to calculate the demand of resources for the next period of task requests. Then, a multi-objective constrained optimization model of power consumption and a low-energy resource allocation algorithm based on probabilistic matching(RA-PM) are proposed. In order to reduce the power consumption further, the resource allocation algorithm based on the improved simulated annealing(RA-ISA) is designed with the improved simulated annealing algorithm. Experimental results show that the prediction and conservative control strategy make resource pre-allocation catch up with demands, and improve the efficiency of real-time response and the stability of the system. Both RA-PM and RA-ISA can activate fewer hosts, achieve better load balance among the set of high applicable hosts, maximize the utilization of resources, and greatly reduce the power consumption of cloud computing systems.
基金supported by the National Natural Science Foundation of China(61401389)
文摘The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).
基金Projects(51175265,51305207)supported by the National Natural Science Foundation of China
文摘Magnetorheological(MR) cell with multi-coil was designed to enlarge the range of controllable transmission torque by increasing the effective length. Individual input current was proposed to maximize its potential for reducing power consumption and generating large yield stress. Finite element analysis was performed to analyze magnetic field distribution, based on which a prototype MR cell was fabricated and tested to investigate the performance of various combinations of individual input currents. A good correlation was identified between experimental results and FEA predications. The results show that the power consumption can be reduced to 42.4%, maintaining large transmission torque, by distributing the total current(2 A) to three individual magnetic coils. In addition, optimal results of four input currents considering a multi-objective function are obtained by changing the weighting factor λ. The advantage of this design, such as lower power consumption and more control flexibility, makes it more competitive in engineering applications that require large energy consumption.
基金Project(XDA-06010402)supported by the Strategic Priority Research Program of Chinese Academy of SciencesProject(Y5S7061G51)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘5G baseband signal processing places greater real-time and reliability requirements on hardware.Based on the architecture of the MaPU,a reconfigurable computing architecture is proposed according to the characteristics of the 5G baseband signal processing.A dedicated instruction set for 5G baseband signal processing is proposed.The corresponding functional units are designed for reuse of hardware resources.A redirected register file is proposed to address latency and power consumption issues in internetwork.A two-dimensional code compression scheme is proposed for cases in which the use ratio of instruction memory is low.The access mode of the data memory is extended,the performance is improved and the power consumption is reduced.The throughput of 5G baseband processing algorithm is one to two orders of magnitude higher than that of the TMS320C6670 with less power consumption.The silicon area evaluated by layout is 5.8 mm2,which is 1/6 of the MaPU’s.The average power consumption is 0.7 W,which is 1/5 of the MaPU’s.
基金supported by the National Research Foundation (NRF) of Korea through contract N-14-NMIR06
文摘Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.