K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and L...K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and LiOH-H2O as starting materials and were characterized by X-ray diffractometry, scanning electron microscopy, and BET. The catalytic activity of titanate catalysts on PM oxidation was evaluated using the temperature programmed oxidation (TPO) method. The test results showed that the perovskite structure of K2Ti205 was still retained after doping a small amount of Li, and the catalytic performance of LixK2-xTi2O5 had been improved significantly compared with that of K2Ti2O5. Li0.15K1.85Ti205 catalyst had the highest catalytic activity with an ignition temperature of 210℃ and a peak temperature of 290℃. The catalytic activity of both K2Ti2O5 and LixK2-xTi2O5 under intimate contact was higher than that under loose contact. When the exhaust gas flow rate was around 100 mL/min, the catalyst samples showed a highest activity. The Li doped K2Ti2O5 could be an excellent candidate for PM oxidation due to its high oxidation activity, water stability, resistance to sulfur poisoning and economical advantages.展开更多
To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were invest...To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti205 and soot, the content of water vapor and SO2 in exhaust, and the repeated use on catalytic activity of K2Ti205 were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti205 had high catalytic activity and good stability.展开更多
The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate...The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.展开更多
基金supports provided for this research by the Education Department of Liaoning Province of China (No. 2009T061)Ministry of Education of China (No. [2010] 1561)
文摘K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and LiOH-H2O as starting materials and were characterized by X-ray diffractometry, scanning electron microscopy, and BET. The catalytic activity of titanate catalysts on PM oxidation was evaluated using the temperature programmed oxidation (TPO) method. The test results showed that the perovskite structure of K2Ti205 was still retained after doping a small amount of Li, and the catalytic performance of LixK2-xTi2O5 had been improved significantly compared with that of K2Ti2O5. Li0.15K1.85Ti205 catalyst had the highest catalytic activity with an ignition temperature of 210℃ and a peak temperature of 290℃. The catalytic activity of both K2Ti2O5 and LixK2-xTi2O5 under intimate contact was higher than that under loose contact. When the exhaust gas flow rate was around 100 mL/min, the catalyst samples showed a highest activity. The Li doped K2Ti2O5 could be an excellent candidate for PM oxidation due to its high oxidation activity, water stability, resistance to sulfur poisoning and economical advantages.
基金the financial supports provided for this research by the Education Department of Liaoning Province of China(No.2009T061)the Ministry of Education of China(No.[2010]1561)
文摘To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti205 and soot, the content of water vapor and SO2 in exhaust, and the repeated use on catalytic activity of K2Ti205 were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti205 had high catalytic activity and good stability.
基金the support of the instrument and equipment fund of the Key Laboratory of Special Energy,Ministry of Education,Nanjing University of Science and Technology,China.
文摘The severe erosion and inadequate mechanical strength are prominent challenges for high-energy gun propellants.To address it,novel PTW@PDA composites was prepared by polydopamine(PDA)-modifying onto potassium titanate whisker(PTW,K_(2)Ti_(6)O_(13)),and after was incorporated into gun propellant as erosion-reducing and mechanical-reinforcing fillers.The interfacial characterizations results indicated that as-prepared PTW@PDA composites exhibits an enhanced surface compatible with propellant matrix,thereby facilitating their dispersion into propellants more effectively than raw PTW materials.Compared to original propellants,PTW@PDA-modified propellants exhibited significant less erosion,with a Ti-Kbased protective coating being detected on the eroded steel.And 0.5 wt%and 1.0 wt%addition of PTW@PDA significantly improved impact,compressive and tensile strength of propellants.Despite the inevitably reduction in relative force,PTW@PDA slightly increase propellant burning rate while exerting little adverse impact on propellant dynamic activity.This strategy can provide a promising alternative to develop high-energy gun propellant with less erosion and more mechanical strength.