Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)G...Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)Ga,and^(89)Zr.Among the radiotracers,the radioactive^(18)F-labelled chemical agent as PET probes plays a predominant role in monitoring,detecting,treating,and predicting tumours due to its perfect half-life.In this paper,the^(18)F-labelled chemical materials as PET probes are systematically summarized.First,we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging.It highlights the^(18)F-labelled chemical agents used as PET probes,including[^(18)F]-2-deoxy-2-[^(18)F]fluoro-D-glucose([^(18)F]-FDG),^(18)F-labelled amino acids,^(18)F-labelled nucleic acids,^(18)F-labelled receptors,^(18)F-labelled reporter genes,and^(18)F-labelled hypoxia agents.In addition,some PET probes with metal as a supplementary element are introduced briefly.Meanwhile,the^(18)F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail.The approach and strategies for the fabrication of^(18)F-labelled PET probes are also described briefly.The future development of the PET probe is also prospected.The development and application of^(18)F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.展开更多
文摘Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)Ga,and^(89)Zr.Among the radiotracers,the radioactive^(18)F-labelled chemical agent as PET probes plays a predominant role in monitoring,detecting,treating,and predicting tumours due to its perfect half-life.In this paper,the^(18)F-labelled chemical materials as PET probes are systematically summarized.First,we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging.It highlights the^(18)F-labelled chemical agents used as PET probes,including[^(18)F]-2-deoxy-2-[^(18)F]fluoro-D-glucose([^(18)F]-FDG),^(18)F-labelled amino acids,^(18)F-labelled nucleic acids,^(18)F-labelled receptors,^(18)F-labelled reporter genes,and^(18)F-labelled hypoxia agents.In addition,some PET probes with metal as a supplementary element are introduced briefly.Meanwhile,the^(18)F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail.The approach and strategies for the fabrication of^(18)F-labelled PET probes are also described briefly.The future development of the PET probe is also prospected.The development and application of^(18)F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.
文摘目的探究胸部正电子发射断层/磁共振(positron emission tomography/magnetic resonance,PET/MR)检查中^(18)F-氟代脱氧葡萄糖(^(18)F-fluorodeoxyglucose,^(18)F-FDG)使用剂量降低对正电子发射断层(positron emission tomography,PET)图像质量及病变可检测性的影响。材料与方法回顾性分析2022年3月至2023年8月于东部战区总医院放射诊断科使用SIGNA PET/MR行^(18)F-FDG胸部PET/MR检查(注射剂量3.70 MBq/kg)的患者图像118例,所有图像中均有异常放射性核素浓聚病灶。用5个不同PET采集时间(20、10、5、2、1 min)对列表(list-mode,list)数据回顾性重建,分别模拟100%、50%、25%、10%、5%^(18)F-FDG注射剂量,记作G100、G50、G25、G10、G5。用李克特5分法对5组图像整体质量进行主观评分,采用Friedman检验比较各组间差异。客观分析指标包括病变标准化摄取值(standardized uptake value,SUV)的最大值(maximum SUV of lesion,L-SUVmax)、平均值(mean SUV of lesion,L-SUVmean)、标准差(standard deviation of lesion SUV,L-SUVsd)、背景SUV标准差(standard deviation of background SUV,B-SUVsd)、病变信噪比(signal-to-noise ratio of lesion,L-SNR)、图像噪声比(image noise ratio,IN)和L-SUVmax相对背景噪声比(lesion-to-background ratio,LBR),采用单因素重复测量方差分析比较各指标组间整体差异,组间两两比较采用Bonferroni校正。以G100为参考,评估其他组病变可检测性。结果5组^(18)F-FDG模拟剂量越高图像整体质量的主观评分也越高(P<0.05)。G25、G50、G100图像质量可满足临床诊断需求,均评分>4分。各组L-SUVmax、L-SUVmean、L-SUVsd、IN和LBR随^(18)F-FDG模拟剂量增加而降低,差异有统计学意义(均P<0.05),L-SNR随^(18)F-FDG模拟剂量增加而增加,差异亦有统计学意义(P<0.05)。组间比较结果:在L-SUVmax和L-SUVsd上G25、G50、G100任意两组相比差异均无统计学意义(均P>0.05),其余任意两组相比差异均有统计学意义(均P<0.05);L-SUVmean和L-SNR上,G5、G10两组之间或G25、G50、G100三组之间对比差异均无统计学意义(均P>0.05),其余任意两组相比差异均有统计学意义(均P<0.05);IN上,5组之间任意两组对比差异均有统计学意义(均P<0.05);LBR上,G5和G10、G25和G100、G50和G100对比差异均无统计学意义(均P>0.05),余任意两组相比差异均有统计学意义(均P<0.05)。以G100为参考,G50、G25、G10、G5漏检率分别为1.4%、2.4%、4.4%、6.8%。结论使用SIGNA PET/MR,若胸部^(18)F-FDG PET/MR检查PET时间为20 min,^(18)F-FDG剂量可由3.70 MBq/kg减少至0.93 MBq/kg,用量减少了75%,这不会改变PET图像质量及定量评估结果。