A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-ge...A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.展开更多
A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels.Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software ...A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels.Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software is developed using LabVIEW, and the offline Compton imaging codes are written in C++. The prototype has been successfully calibrated, and its capabilities for source detection, spectroscopy, and Compton imaging have been demonstrated using a Cs-137 source.The angular resolution of the 662 keV line is 36° FWHM for the simple back-projection method and 9.6° FWHM for the MLEM reconstruction method. The system is ready to be extended to 11-by-11 pixels in the future, and a better imaging quality can be expected due to the better relative position resolution.展开更多
As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam positio...As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11605248,11605249,11605267,and 11805032.)
文摘A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.
文摘A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels.Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software is developed using LabVIEW, and the offline Compton imaging codes are written in C++. The prototype has been successfully calibrated, and its capabilities for source detection, spectroscopy, and Compton imaging have been demonstrated using a Cs-137 source.The angular resolution of the 662 keV line is 36° FWHM for the simple back-projection method and 9.6° FWHM for the MLEM reconstruction method. The system is ready to be extended to 11-by-11 pixels in the future, and a better imaging quality can be expected due to the better relative position resolution.
基金Supported by the National Science Foundation of China (10675118, 11175173)
文摘As an important part of the beam diagnostic system, the synchrotron light beam position measurement has a very high value in the high quality and high stability light source applied research. A new photon beam position monitor based on position-sensitive detector (PSD) has been developed to measure the photon beam position in vertical and horizontal directions at the same time at HLS (Hefei Light Source). The new PBPM based on the PSD has fast response speed, high sensitivity and wide dynamic range. This PBPM system also includes the C4674 signal processing circuit, NI USB-9215 data acquisition device and the LABVIEW data acquisition program. This PBPM system has been calibrated vertically and horizontally on-line, and then has been applied in the beam line B3EA of HLS to measure the position of the synchrotron light. As the results shown, the resolution of the system is better than 3 mm.