Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signal...Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.展开更多
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi...With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.展开更多
Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location ...Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.展开更多
For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved pe...For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.展开更多
The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute th...The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
为了实现利用电磁辐射信号进行配网电弧故障定位,提出了一种基于到达时差(time difference of arrival,TDOA)方法的Chan-LM协同定位算法。该算法采用Chan算法快速获得的初始点,再经过LM(Levenberg-Marquart)算法迭代修正定位结果。仿真...为了实现利用电磁辐射信号进行配网电弧故障定位,提出了一种基于到达时差(time difference of arrival,TDOA)方法的Chan-LM协同定位算法。该算法采用Chan算法快速获得的初始点,再经过LM(Levenberg-Marquart)算法迭代修正定位结果。仿真分析了TDOA定位算法、电磁辐射传感器配置对定位精度的影响,结果表明Chan-LM协同算法比Chan算法的定位误差减小40%,参考主站位于中心位置的Y形布站方式,传感器所在海拔高度相同时的监测区域整体定位准确度较高。利用实测电弧电磁辐射波形验证了Chan-LM协同算法能够有效改善定位精度,为基于电磁辐射TDOA的电弧定位策略应用提供参考依据。展开更多
文摘Analyzed the relation between time delay difference and time delay estimation errors, based on the principles of three-point locating, a reformed threshold method for time delay difference estimation of impulse signals, called as amendment estimation for short, is developed by introducing channel equalization technique to its conventional version, named as direct estimation in this paper, to improve the estimation stability. After inherent relationship between time delay and phase shift of signals is analyzed, an integer period error compensation method utilized the diversities of both contribution share and contribution mode of concerned estimates is proposed under the condition of high precision phase lag estimation. Finally, a cooperative multi-threshold estimation method composed of amendment and direct estimations to process impulse signals with three thresholds is established. In sea trials data tests of passive locating, this method improves the estimation precision of time delay difference efficiently. The experiments verify the theoretical predictions.
基金supported by the Major National Science&Technology Projects(2010ZX03006-002-04)the National Natural Science Foundation of China(61072070)+4 种基金the Doctorial Programs Foundation of the Ministry of Education(20110203110011)the"111 Project"(B08038)the Fundamental Research Funds of the Ministry of Education(72124338)the Key Programs for Natural Science Foundation of Shanxi Province(2012JZ8002)the Foundation of State Key Laboratory of Integrated Services Networks(ISN1101002)
文摘With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.
基金supported by the National Natural Science Foundation of China(6140236561271300)the 13th Five-Year Weaponry PreResearch Project。
文摘Based on the time differences of arrival(TDOA) and frequency differences of arrival(FDOA) measurements of the given planar stationary radiation source, the joint TDOA/FDOA location algorithm which solves the location of the target directly is proposed. Compared with weighted least squares(WLS) methods,the proposed algorithm is also suitable for well-posed conditions,and gets rid of the dependence on the constraints of Earth's surface. First of all, the solution formulas are expressed by the radial range. Then substitute it into the equation of the radial range to figure out the radial range between the target and the reference station. Finally use the solution expression of the target location to estimate the location of the target accurately. The proposed algorithm solves the problem that WLS methods have a large positioning error when the number of observation stations is not over-determined. Simulation results show the effectiveness of the proposed algorithm, including effectively increasing the positioning accuracy and reducing the number of observatories.
基金supported by the National Natural Science Foundation of China(6107210761271300)+4 种基金the Shaanxi Industry Surmount Foundation(2012K06-12)the Arm and Equipment Pre-research Foundationthe Fundamental Research Funds for the Central Universities of China(K0551302006K5051202045K50511020024)
文摘For the joint time difference of arrival(TDOA) and angle of arrival(AOA) location scene,two methods are proposed based on the rectangular coordinates and the polar coordinates,respectively.The problem is solved perfectly by calculating the target position with the joint TDOA and AOA location.On the condition of rectangular coordinates,first of all,it figures out the radial range between target and reference stations,then calculates the location of the target.In the case of polar coordinates,first of all,it figures out the azimuth between target and reference stations,then figures out the radial range between target and reference stations,finally obtains the location of the target.Simultaneously,simulation analyses show that the theoretical analysis is correct,and the proposed methods also provide the application of the joint TDOA and AOA location algorithm with the theoretical basis.
基金supported by the National Natural Science Foundation of China(61101173)
文摘The conventional direct position determination(DPD) algorithm processes all received signals on a single sensor.When sensors have limited computational capabilities or energy storage,it is desirable to distribute the computation among other sensors.A distributed adaptive DPD(DADPD)algorithm based on diffusion framework is proposed for emitter localization.Unlike the corresponding centralized adaptive DPD(CADPD) algorithm,all but one sensor in the proposed algorithm participate in processing the received signals and estimating the common emitter position,respectively.The computational load and energy consumption on a single sensor in the CADPD algorithm is distributed among other computing sensors in a balanced manner.Exactly the same iterative localization algorithm is carried out in each computing sensor,respectively,and the algorithm in each computing sensor exhibits quite similar convergence behavior.The difference of the localization and tracking performance between the proposed distributed algorithm and the corresponding CADPD algorithm is negligible through simulation evaluations.
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。
文摘为了实现利用电磁辐射信号进行配网电弧故障定位,提出了一种基于到达时差(time difference of arrival,TDOA)方法的Chan-LM协同定位算法。该算法采用Chan算法快速获得的初始点,再经过LM(Levenberg-Marquart)算法迭代修正定位结果。仿真分析了TDOA定位算法、电磁辐射传感器配置对定位精度的影响,结果表明Chan-LM协同算法比Chan算法的定位误差减小40%,参考主站位于中心位置的Y形布站方式,传感器所在海拔高度相同时的监测区域整体定位准确度较高。利用实测电弧电磁辐射波形验证了Chan-LM协同算法能够有效改善定位精度,为基于电磁辐射TDOA的电弧定位策略应用提供参考依据。