In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance.Since the...In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance.Since the view on the crater zone and the tip of a projectile penetrating a ceramic is rapidly getting obscured by damaged material,a flash X-ray technique has to be applied in order to visualize projectile penetration.For this purpose,usually several flash X-ray tubes are arranged around the target and the radiographs are recorded on film.At EMI a flash X-ray imaging method has been developed,which provides up to eight flash radiographs in one experiment.A multi-anode 450 k V flash X-ray tube is utilized with this method.The radiation transmitted through the target is then detected on a fluorescent screen.The fluorescent screen converts the radiograph into an image in the visible wavelength range,which is photographed by means of a high-speed camera.This technique has been applied to visualize and analyze the penetration of 7.62 mm AP projectiles into three different types of Si C ceramics.Two commercial Si C grades and MICASIC(Metal Infiltrated Carbon derived Si C),a C-Si Si C ceramic developed by DLR,have been studied.The influences,not only of the ceramic but also the backing material,on dwell time and projectile erosion have been studied.Penetration curves have been determined and their relevance to the ballistic resistance is discussed.展开更多
In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR ...In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.展开更多
Explosive reactive armor(ERA)is currently being actively developed as a protective system for mobile devices against ballistic threats such as kinetic energy penetrators and shaped-charge jets.Considering mobility,the...Explosive reactive armor(ERA)is currently being actively developed as a protective system for mobile devices against ballistic threats such as kinetic energy penetrators and shaped-charge jets.Considering mobility,the aim is to design a protection system with a minimal amount of required mass.The efficiency of an ERA is sensitive to the impact position and the timing of the detonation.Therefore,different designs have to be tested for several impact scenarios to identify the best design.Since analytical models are not predicting the behavior of the ERA accurately enough and experiments,as well as numerical simulations,are too time-consuming,a data-driven model to estimate the displacements and deformation of plates of an ERA system is proposed here.The ground truth for the artificial neural network(ANN)is numerical simulation results that are validated with experiments.The ANN approximates the plate positions for different materials,plate sizes,and detonation point positions with sufficient accuracy in real-time.In a future investigation,the results from the model can be used to estimate the interaction of the ERA with a given threat.Then,a measure for the effectiveness of an ERA can be calculated.Finally,an optimal ERA can be designed and analyzed for any possible impact scenario in negligible time.展开更多
基金financial support of the study by the Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWe B) (grant number E/E210/AB015/9F120)
文摘In order to improve the performance of ceramic composite armor it is essential to know the mechanisms during each phase of the projectile–target interaction and their influence on the penetration resistance.Since the view on the crater zone and the tip of a projectile penetrating a ceramic is rapidly getting obscured by damaged material,a flash X-ray technique has to be applied in order to visualize projectile penetration.For this purpose,usually several flash X-ray tubes are arranged around the target and the radiographs are recorded on film.At EMI a flash X-ray imaging method has been developed,which provides up to eight flash radiographs in one experiment.A multi-anode 450 k V flash X-ray tube is utilized with this method.The radiation transmitted through the target is then detected on a fluorescent screen.The fluorescent screen converts the radiograph into an image in the visible wavelength range,which is photographed by means of a high-speed camera.This technique has been applied to visualize and analyze the penetration of 7.62 mm AP projectiles into three different types of Si C ceramics.Two commercial Si C grades and MICASIC(Metal Infiltrated Carbon derived Si C),a C-Si Si C ceramic developed by DLR,have been studied.The influences,not only of the ceramic but also the backing material,on dwell time and projectile erosion have been studied.Penetration curves have been determined and their relevance to the ballistic resistance is discussed.
文摘In the present paper, the high velocity impact of 9 mm soft lead projectile on 10 mm and 30 mm thick Eglass/epoxy composites was studied using a 450 kV Flash X-ray radiography(FXR) system. The basic parameters of FXR imaging, such as effect of ratio of target to film(TF) and source to target(ST) distances and X-ray penetration thickness of the composite material were optimized based on clarity and the actual dimensions of the objects. The optimized parameters were used in the FXR imaging of the ballistic event of 9 mm soft projectile on E-glass/epoxy composite. The real time deformation patterns of both the projectile and composite target during the ballistic impact were captured and studied at different time intervals. The notable failure modes of the 10 mm thick target with time include fibre breakage, bulging on the back side, delamination, recovery of the bulging, reverse bulging and its recovery. However, with increase in thickness of the target to 30 mm the only failure mechanism observed is the breaking of fibres. The ballistic impact event was also numerically simulated using commercially available LS-DYNA software. The numerically simulated deformation patterns of the projectile and target at different time intervals are closely matching with the corresponding radiographic images.
文摘Explosive reactive armor(ERA)is currently being actively developed as a protective system for mobile devices against ballistic threats such as kinetic energy penetrators and shaped-charge jets.Considering mobility,the aim is to design a protection system with a minimal amount of required mass.The efficiency of an ERA is sensitive to the impact position and the timing of the detonation.Therefore,different designs have to be tested for several impact scenarios to identify the best design.Since analytical models are not predicting the behavior of the ERA accurately enough and experiments,as well as numerical simulations,are too time-consuming,a data-driven model to estimate the displacements and deformation of plates of an ERA system is proposed here.The ground truth for the artificial neural network(ANN)is numerical simulation results that are validated with experiments.The ANN approximates the plate positions for different materials,plate sizes,and detonation point positions with sufficient accuracy in real-time.In a future investigation,the results from the model can be used to estimate the interaction of the ERA with a given threat.Then,a measure for the effectiveness of an ERA can be calculated.Finally,an optimal ERA can be designed and analyzed for any possible impact scenario in negligible time.