This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printin...This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries.展开更多
CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining wa...CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone(PVP) and polyvinyl alcohol(PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake(from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine(PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite(TFC) membrane of the optimized blend(50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone(PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes.展开更多
A series of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blended hydrogel with kappa-carrageenan (KC) were prepared by radiation crosslinking with electron beam to improve the properties of hydrogel as woun...A series of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blended hydrogel with kappa-carrageenan (KC) were prepared by radiation crosslinking with electron beam to improve the properties of hydrogel as wound dressing. The properties of the blended hydrogels were evaluated in terms of gel fraction, swelling behavior, gel strength and water evaporation from hydrogel. Gel fraction of PVA/PVP was saturated at 50 kGy and the achievcd gel fraction was 70%~80%. However, obtained hydrogel was very fragile and produced many bubbles at a dose of 50kGy and above, hence 1%~5% KC were added to give toughness. The rate of gel formation and the toughness of the blended hydrogel were raised after mixing KC. The PVA/PVP/KC blended hydrogel irradiated showed satisfactory properties for wound dressing, it did not produce bubble during irradiation, and it could retard the water evaporation.展开更多
A new photochromic complex of Keggin type tungstophosphate acid/polyvinyl pyrrolidone system was prepared, and its thin films was made by the dipping method. Their photochromic properties were investigated by FTIR, UV...A new photochromic complex of Keggin type tungstophosphate acid/polyvinyl pyrrolidone system was prepared, and its thin films was made by the dipping method. Their photochromic properties were investigated by FTIR, UV Vis spectra. The salts were formed by the combination of the ion based on the N atoms in the polymeric molecules and H + of the acids. The UV Vis spectra showed that this type of system had an excellent photochromic behavior. The g values of ESR spectra for the one electron blues were the characteristic of tetragonal W(Ⅴ) complex in colored thin film. It was indicated that the charge could be transferred between the anion and cation under irradiation of UV light and the result in the oxidation of the cation and the reduction of the anion.展开更多
文摘This study focused on the production of polypropylene(PP)/silver(Ag)composites via additive manufacturing.This study aimed to enhance the quality of medical-grade PP in material extrusion(MEX)three-dimensional printing(3DP)by improving its mechanical properties while simultaneously adding antibacterial properties.The latter can find extremely important and versatile properties that are applicable in defense and security domains.PP/Ag nanocomposites were prepared using a novel method based on a reaction occurring while mixing appropriate quantities of the starting polymers and additives,namely polyvinylpyrrolidone(PVP)as the matrix material and silver nitrate(AgNO_(3))as the filler.This process produced three-dimensional(3D)printed filaments,which were then used to create specimens for a series of standardized tests.It was found that the mechanical properties of the nanocomposites were enhanced in relation to pristine PP,especially for the PP matrix with various loadings of AgNO_(3)and PVP,such as 5.0 wt%and 2.5 wt%,respectively.The voids,inclusions,and actual-to-nominal dimensions also showed improved results.The 3DP specimens exhibited a more effective biocidal performance against Staphylococcus aureus than Escherichia coli,which developed an inhibition zone only in the case of PP with filler loading percentages of AgNO_(3)and PVP at 10.0 wt%and 5.0 wt%,respectively Compounds possessing such properties can be beneficial for various applications requiring increased mechanical properties and biocidal capabilities,such as in the Defence or medical industries.
文摘研究不同质量浓度聚乙烯毗咯烷酮(polyvinyl pyrrolidone,PVP)对大久保桃果实品质和褐变的影响。结果表明:不同质量浓度的PVP处理可有效延缓果实软化和出汁率、还原糖含量的升高,保持较高的可滴定酸和VC含量,降低果实的褐变指数,其中3 mg/m L PVP处理的效果最好。PVP处理可减少桃果实冷藏期间丙二醛积累和细胞膜透性的增加,抑制过氧化物氧化酶、多酚氧化酶和苯丙氨酸解氨酶活性。这说明,PVP可减轻果实褐变,保持果实营养品质,具有较好的应用前景。
基金the Norwegian Research Council for the financial support to this work through the Nano2021 program (project number 239172)
文摘CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone(PVP) and polyvinyl alcohol(PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake(from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine(PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite(TFC) membrane of the optimized blend(50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone(PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes.
文摘A series of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blended hydrogel with kappa-carrageenan (KC) were prepared by radiation crosslinking with electron beam to improve the properties of hydrogel as wound dressing. The properties of the blended hydrogels were evaluated in terms of gel fraction, swelling behavior, gel strength and water evaporation from hydrogel. Gel fraction of PVA/PVP was saturated at 50 kGy and the achievcd gel fraction was 70%~80%. However, obtained hydrogel was very fragile and produced many bubbles at a dose of 50kGy and above, hence 1%~5% KC were added to give toughness. The rate of gel formation and the toughness of the blended hydrogel were raised after mixing KC. The PVA/PVP/KC blended hydrogel irradiated showed satisfactory properties for wound dressing, it did not produce bubble during irradiation, and it could retard the water evaporation.
文摘A new photochromic complex of Keggin type tungstophosphate acid/polyvinyl pyrrolidone system was prepared, and its thin films was made by the dipping method. Their photochromic properties were investigated by FTIR, UV Vis spectra. The salts were formed by the combination of the ion based on the N atoms in the polymeric molecules and H + of the acids. The UV Vis spectra showed that this type of system had an excellent photochromic behavior. The g values of ESR spectra for the one electron blues were the characteristic of tetragonal W(Ⅴ) complex in colored thin film. It was indicated that the charge could be transferred between the anion and cation under irradiation of UV light and the result in the oxidation of the cation and the reduction of the anion.