Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of t...Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.展开更多
Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were ...Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb's envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
The relationship between rheological properties and morphology of immiscible polystyrene(PS)/poly(methyl methacrylate)(PMMA) blends was studied.The blends were prepared using a twin screw extruder.A single screw extru...The relationship between rheological properties and morphology of immiscible polystyrene(PS)/poly(methyl methacrylate)(PMMA) blends was studied.The blends were prepared using a twin screw extruder.A single screw extruder equipped with a slit die was used to perform shear flow measurements of PS/PMMA blends.Morphological examinations were conducted on the cryogenically fractured and extracted samples by scanning electron microscopy.The results show that the melt viscosity of PS/PMMA blend decreases with increasing shear stress,which is attributed to not only the disentanglement of macromolecules but also the reduction in the domain size and the resultant increase of the interfacial area.The power-law index of the blend melt is lower than any of its component melt,suggesting that deformation and breakup of the dispersed phase increase the dependence of the melt viscosity on the shear stress.The blend whose domain size decreases at a faster rate with increasing shear stress,exhibits a strong shear rate dependence on the melt viscosity.The comparison of the morphologies of samples before and after the slit section of the die indicates that the morphology of the blend has a quick response to shear flow,the coalescence of the dispersed drops is predominant for blends at low shear rates.展开更多
Uniform polystyrene hollow particles were prepared successfully by employing SPG (Shirasu porous glass) emulsification technique. The oil phase composed of monomer [styrene (St) and N,N’-dimethylamino ethylmethacryla...Uniform polystyrene hollow particles were prepared successfully by employing SPG (Shirasu porous glass) emulsification technique. The oil phase composed of monomer [styrene (St) and N,N’-dimethylamino ethylmethacrylate (DMAEMA)], hexadecane (HD) and initiator was permeated through the uniform pores of SPG membrane into the aqueous phase (containing stabilizer, emulsifier and water-soluble inhibitor ) by a gas pressure to form uniform droplets. The droplets were then polymerized at 70℃. It was found that the hollow particles were obtained by adding a small amount of DMAEMA into the oil phase and by using NaNo2 as the water-soluble inhibitor, while only one-hole particles were obtained without adding DMAEMA, or when using diaminophenylene (DAP) or hydroquinone (HQ) as the inhibitor. The formation mechanism was discussed by the view of interfacial tensions between polymer and aqueous phase, HD and aqueous phase, and HD and polymer. Further more, it was found that hollow particles can be obtained even when DMAEMA content in the oil phase was very low, by increasing HD to high value.展开更多
Electrospinning is a simple technique used to fabricate polymeric nano-fibrous membranes.These nano-fibers have found a wide range of valuable applications in the biomedical field.However,it has not been utilized with...Electrospinning is a simple technique used to fabricate polymeric nano-fibrous membranes.These nano-fibers have found a wide range of valuable applications in the biomedical field.However,it has not been utilized with solid high explosives yet.Herein,the electrospinning technique has been used to fabricate polystyrene(PS)/1,3,5-trinitro-1,3,5-triazinane(RDX)composite nanofibers.The governed electrospinning parameters,voltage,distance from the collector,flow rate,mandrel rotating speed,time,and solution concentration,that greatly affect the morphology of the obtained nanofibers were optimized.The fabricated PS/RDX nano-fibers were characterized using scanning electron microscopy(SEM),X-ray diffractometer(XRD),and Fourier Transform Infrared(FTIR)spectroscopy.The impact and friction sensitivities of PS/RDX were also measured.The thermal behavior of the prepared composite and the pure materials were studied by the thermal gravimetric analysis technique(TGA).SEM results proved the fabrication of PS/RDX fibers in the nano-size via electrospinning.FTIR spectroscopy confirmed the existence of the characteristic functional groups of both PS and RDX in the composite nano-fibers.XRD sharp peaks showed the conversion of amorphous PS into crystalline shape via electrospinning and also confirmed the formation of PS/RDX composite.The PS fibers absorbed the heat and increased the onset decomposition of the pure RDX from 181.5 to 200.7℃in the case of PS/RDX fibers.Interestingly,PS/RDX nano-fibers showed the relatively low impact and friction sensitivities of 100 J and 360 N respectively.These results could introduce PS/RDX nanofibrous composite in the field of explosives detection with high levels of safety.展开更多
Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,an...Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,and precursor,respectively.Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs,including transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),Fourier transform infrared spectrometer(FTIR),X-ray diffractometer(XRD),fluorescence spectrometer,and ultraviolet visible absorption spectrometer.FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm.Moreover,the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm,respectively.Under the optimal detection conditions,FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200μmol·L^(-1).The detection limit was 0.084μmol·L^(-1).The fluorescence-quenching mechanism was ascribed to the static quenching.The detection system based on FA@AgNCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.展开更多
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
目的探讨Russell-Silver综合征(RSS)发病机制。方法采集6例男性,年龄6~8岁的临床表型疑似RSS患儿,以及2例患儿父母、5例健康男性儿童的外周血2 m L,分离单个核细胞并提取基因组DNA,应用焦磷酸测序技术进行分析,检测染色体11p15.5上印记...目的探讨Russell-Silver综合征(RSS)发病机制。方法采集6例男性,年龄6~8岁的临床表型疑似RSS患儿,以及2例患儿父母、5例健康男性儿童的外周血2 m L,分离单个核细胞并提取基因组DNA,应用焦磷酸测序技术进行分析,检测染色体11p15.5上印记基因控制区域(ICR)1的H19基因的甲基化水平。应用甲基化特异性多重连接探针扩增技术(MS-MLPA)对1例焦磷酸测序结果阳性且为RSS患儿的甲基化水平进行验证分析并对相应区域的基因拷贝数进行检测。结果焦磷酸测序结果显示,6例患儿在H19-差异甲基化区域(DMR)的6个Cp G位点的甲基化率为11%~29%;患儿父母及正常对照组对应位点的甲基化率为44%~59%。焦磷酸测序结果阳性的1例患儿对应的MS-MLPA结果显示,H19基因的4个位点甲基化率在10%左右,明显低于正常水平。KCNQ1OT1基因的4个位点甲基化率约为50%,在正常范围内。所测样本的基因拷贝数均在正常范围内。结论 RSS患儿的ICR1的H19-DMR存在甲基化水平异常。展开更多
An acidic solution containing 280 mg/l silver and others was treated. In order to selectively recover silver without losing other metallic elements from the solution, cementation was adopted with metallic copper. The ...An acidic solution containing 280 mg/l silver and others was treated. In order to selectively recover silver without losing other metallic elements from the solution, cementation was adopted with metallic copper. The kinetics of cementation reaction and copper dissolution and mechanism of copper consumption were studied. The results indicated that the rate of cementation reaction and copper consumption were markedly increased with the increase of temperature. For the same cementation recovery of silver , copper consumption at elevated temperature was much higher than that at ambient temperature . Cementation rate and copper consumption rate also increased with the increase of stirring velocity, while copper consumption at different stirring velocity for the same recovery of silver was almost not different. Studies on the chemical mechanism of copper consumption showed that Fe 3+ and residual leaching additive RH in the solution were the main factors that caused extra copper consumption in acidic solutions.展开更多
An attempt was made to deposit thin film of silver onto the glass substrate by using Ag Cl precursor, instead of conventional precursor AgNO_3 with vitamin C by inexpensive and convenient successive ionic layer adsorp...An attempt was made to deposit thin film of silver onto the glass substrate by using Ag Cl precursor, instead of conventional precursor AgNO_3 with vitamin C by inexpensive and convenient successive ionic layer adsorption and reaction(SILAR) method. The deposited silver thin film was characterized by X-ray diffraction(XRD) analysis, scanning electron microscope(SEM), UV-visible and electrical I-V study. The diffraction study showed FCC structure of metallic silver in good agreement with the standard values of JCPDS(04–0783). SEM reveals flower like nano particles produced on the substrate. The surface plasmon resonance(SPR) peak in the UV-visible spectrum shows maximum absorption at 350 nm. The film shows an ohmic behavior and its electrical resistivity was found ~103 ?·cm at room temperature.展开更多
A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted a...A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.展开更多
Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and t...Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates.The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method.The formation mechanism of triangular silver nanoplates was proposed.The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.展开更多
The effects of silver sulfide (Ag 2S) on the bioleaching of chalcopyrite and pyrite were investigated in this paper. It has been shown that Ag 2S enhanced the yields of bioleaching of chalcopyrite but inhibited the bi...The effects of silver sulfide (Ag 2S) on the bioleaching of chalcopyrite and pyrite were investigated in this paper. It has been shown that Ag 2S enhanced the yields of bioleaching of chalcopyrite but inhibited the bio oxidation of pyrite. The addition of Ag 2S selectively increased the copper dissolution from the chalcopyrite containing ores in shake flasks with a recovery of 85.3% compared with 24.3% without Ag 2S, while slightly decreased the iron yields from 51% to 41.8%. The copper extraction of the chalcoopyrite containing waste rock in column leaching charged with 18 kg mass increased up to 21.7% in the presence of Ag 2S, while only 3.4% in the absence of the catalyst. The mechanism of Ag 2S catalysis could be explained well by the "Mixed potential model".展开更多
Stable and monodispersed silver nanoparticles were produced through a mild,convenient,one-pot method based on the reduction of silver nitrate in the presence of poly(amic acid) (PAA) as a stabilizer.The surface plasma...Stable and monodispersed silver nanoparticles were produced through a mild,convenient,one-pot method based on the reduction of silver nitrate in the presence of poly(amic acid) (PAA) as a stabilizer.The surface plasma band transition was monitored along with time in the reaction mixture for three sets of experiments by ultraviolet-visible spectroscopy.Analysis of the data with the Avrami equation yielded n exponent with values between 0.5 and 1.5,demonstrating three-dimensional heterogeneous nucleation and diffusion-controlled growth,accompanied by soft impingement effect.XRD and TEM analyses show a softly agglomerated polycrystalline state and a nearly spherical morphology (<50 nm) of nanoparticles.The FT-IR result indicates that the PAA molecular structure could be hardly influenced by the formation of nanoparticles.展开更多
Mid-infrared transmittance of submicron silver slit arrays was numerically studied with the finite difference time domain method. The slit width varies from 50 nm to 300 nm and a square feature may attach at either or...Mid-infrared transmittance of submicron silver slit arrays was numerically studied with the finite difference time domain method. The slit width varies from 50 nm to 300 nm and a square feature may attach at either or both slit sides. Although the side length of features is one or two orders of magnitude shorter than the wavelength, the attached nanoscale features can modify the transmittance significantly. The transmittance was also further investigated in detail by looking into the electromagnetic fields and Poynting vectors of selected slit geometries. The investigation results show that such change can be attributed to the cavity resonance effect inside the slit arrays. The work is of great importance to the wavelength-selective devices design in optical devices and thermal application fields.展开更多
文摘Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.
基金Project(50708031) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, SEM
文摘Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb's envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金Project(06Y010) supported by the Talent Recruitment FoundationProject(07043B) supported by the Scientific Research Fund of Central South University of Forestry and Technology
文摘The relationship between rheological properties and morphology of immiscible polystyrene(PS)/poly(methyl methacrylate)(PMMA) blends was studied.The blends were prepared using a twin screw extruder.A single screw extruder equipped with a slit die was used to perform shear flow measurements of PS/PMMA blends.Morphological examinations were conducted on the cryogenically fractured and extracted samples by scanning electron microscopy.The results show that the melt viscosity of PS/PMMA blend decreases with increasing shear stress,which is attributed to not only the disentanglement of macromolecules but also the reduction in the domain size and the resultant increase of the interfacial area.The power-law index of the blend melt is lower than any of its component melt,suggesting that deformation and breakup of the dispersed phase increase the dependence of the melt viscosity on the shear stress.The blend whose domain size decreases at a faster rate with increasing shear stress,exhibits a strong shear rate dependence on the melt viscosity.The comparison of the morphologies of samples before and after the slit section of the die indicates that the morphology of the blend has a quick response to shear flow,the coalescence of the dispersed drops is predominant for blends at low shear rates.
文摘Uniform polystyrene hollow particles were prepared successfully by employing SPG (Shirasu porous glass) emulsification technique. The oil phase composed of monomer [styrene (St) and N,N’-dimethylamino ethylmethacrylate (DMAEMA)], hexadecane (HD) and initiator was permeated through the uniform pores of SPG membrane into the aqueous phase (containing stabilizer, emulsifier and water-soluble inhibitor ) by a gas pressure to form uniform droplets. The droplets were then polymerized at 70℃. It was found that the hollow particles were obtained by adding a small amount of DMAEMA into the oil phase and by using NaNo2 as the water-soluble inhibitor, while only one-hole particles were obtained without adding DMAEMA, or when using diaminophenylene (DAP) or hydroquinone (HQ) as the inhibitor. The formation mechanism was discussed by the view of interfacial tensions between polymer and aqueous phase, HD and aqueous phase, and HD and polymer. Further more, it was found that hollow particles can be obtained even when DMAEMA content in the oil phase was very low, by increasing HD to high value.
文摘Electrospinning is a simple technique used to fabricate polymeric nano-fibrous membranes.These nano-fibers have found a wide range of valuable applications in the biomedical field.However,it has not been utilized with solid high explosives yet.Herein,the electrospinning technique has been used to fabricate polystyrene(PS)/1,3,5-trinitro-1,3,5-triazinane(RDX)composite nanofibers.The governed electrospinning parameters,voltage,distance from the collector,flow rate,mandrel rotating speed,time,and solution concentration,that greatly affect the morphology of the obtained nanofibers were optimized.The fabricated PS/RDX nano-fibers were characterized using scanning electron microscopy(SEM),X-ray diffractometer(XRD),and Fourier Transform Infrared(FTIR)spectroscopy.The impact and friction sensitivities of PS/RDX were also measured.The thermal behavior of the prepared composite and the pure materials were studied by the thermal gravimetric analysis technique(TGA).SEM results proved the fabrication of PS/RDX fibers in the nano-size via electrospinning.FTIR spectroscopy confirmed the existence of the characteristic functional groups of both PS and RDX in the composite nano-fibers.XRD sharp peaks showed the conversion of amorphous PS into crystalline shape via electrospinning and also confirmed the formation of PS/RDX composite.The PS fibers absorbed the heat and increased the onset decomposition of the pure RDX from 181.5 to 200.7℃in the case of PS/RDX fibers.Interestingly,PS/RDX nano-fibers showed the relatively low impact and friction sensitivities of 100 J and 360 N respectively.These results could introduce PS/RDX nanofibrous composite in the field of explosives detection with high levels of safety.
文摘Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,and precursor,respectively.Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs,including transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),Fourier transform infrared spectrometer(FTIR),X-ray diffractometer(XRD),fluorescence spectrometer,and ultraviolet visible absorption spectrometer.FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm.Moreover,the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm,respectively.Under the optimal detection conditions,FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200μmol·L^(-1).The detection limit was 0.084μmol·L^(-1).The fluorescence-quenching mechanism was ascribed to the static quenching.The detection system based on FA@AgNCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.
文摘目的探讨Russell-Silver综合征(RSS)发病机制。方法采集6例男性,年龄6~8岁的临床表型疑似RSS患儿,以及2例患儿父母、5例健康男性儿童的外周血2 m L,分离单个核细胞并提取基因组DNA,应用焦磷酸测序技术进行分析,检测染色体11p15.5上印记基因控制区域(ICR)1的H19基因的甲基化水平。应用甲基化特异性多重连接探针扩增技术(MS-MLPA)对1例焦磷酸测序结果阳性且为RSS患儿的甲基化水平进行验证分析并对相应区域的基因拷贝数进行检测。结果焦磷酸测序结果显示,6例患儿在H19-差异甲基化区域(DMR)的6个Cp G位点的甲基化率为11%~29%;患儿父母及正常对照组对应位点的甲基化率为44%~59%。焦磷酸测序结果阳性的1例患儿对应的MS-MLPA结果显示,H19基因的4个位点甲基化率在10%左右,明显低于正常水平。KCNQ1OT1基因的4个位点甲基化率约为50%,在正常范围内。所测样本的基因拷贝数均在正常范围内。结论 RSS患儿的ICR1的H19-DMR存在甲基化水平异常。
文摘An acidic solution containing 280 mg/l silver and others was treated. In order to selectively recover silver without losing other metallic elements from the solution, cementation was adopted with metallic copper. The kinetics of cementation reaction and copper dissolution and mechanism of copper consumption were studied. The results indicated that the rate of cementation reaction and copper consumption were markedly increased with the increase of temperature. For the same cementation recovery of silver , copper consumption at elevated temperature was much higher than that at ambient temperature . Cementation rate and copper consumption rate also increased with the increase of stirring velocity, while copper consumption at different stirring velocity for the same recovery of silver was almost not different. Studies on the chemical mechanism of copper consumption showed that Fe 3+ and residual leaching additive RH in the solution were the main factors that caused extra copper consumption in acidic solutions.
基金the DST-FIST and UGC-SAP,New Delhi for providing the financial support to the Department of Physics,Manonmaniam Sundaranar University
文摘An attempt was made to deposit thin film of silver onto the glass substrate by using Ag Cl precursor, instead of conventional precursor AgNO_3 with vitamin C by inexpensive and convenient successive ionic layer adsorption and reaction(SILAR) method. The deposited silver thin film was characterized by X-ray diffraction(XRD) analysis, scanning electron microscope(SEM), UV-visible and electrical I-V study. The diffraction study showed FCC structure of metallic silver in good agreement with the standard values of JCPDS(04–0783). SEM reveals flower like nano particles produced on the substrate. The surface plasmon resonance(SPR) peak in the UV-visible spectrum shows maximum absorption at 350 nm. The film shows an ohmic behavior and its electrical resistivity was found ~103 ?·cm at room temperature.
基金Project(50874117) supported by the National Natural Science Foundation of China
文摘A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(2007CB815102) supported by the National Basic Research Program of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Triangular silver nanoplates in aqueous solvent and on the surface of quartz substrate have been synthesized by seed-mediated growth approach in the presence of tannin.It was found that both the amount of tannin and the small triangular silver nanoplate seeds added to the growth solution are the key factors to modulation absorption band of triangular silver nanoplates.The optical in-plane dipole surface plasmon resonance (SPR) bands of these Ag nanoplates can be tuned from 608 nm to 980 nm via tannin deoxidization method.The formation mechanism of triangular silver nanoplates was proposed.The tannin deoxidization method realizes a convenient modulation of the absorption band of Ag nanostructures within the visible near-infrared (IR) region both in aqueous solvent and on substrates under mild conditions.
文摘The effects of silver sulfide (Ag 2S) on the bioleaching of chalcopyrite and pyrite were investigated in this paper. It has been shown that Ag 2S enhanced the yields of bioleaching of chalcopyrite but inhibited the bio oxidation of pyrite. The addition of Ag 2S selectively increased the copper dissolution from the chalcopyrite containing ores in shake flasks with a recovery of 85.3% compared with 24.3% without Ag 2S, while slightly decreased the iron yields from 51% to 41.8%. The copper extraction of the chalcoopyrite containing waste rock in column leaching charged with 18 kg mass increased up to 21.7% in the presence of Ag 2S, while only 3.4% in the absence of the catalyst. The mechanism of Ag 2S catalysis could be explained well by the "Mixed potential model".
基金Project(10JJ5057)supported by the Hunan Provincial Natural Science Foundation of China
文摘Stable and monodispersed silver nanoparticles were produced through a mild,convenient,one-pot method based on the reduction of silver nitrate in the presence of poly(amic acid) (PAA) as a stabilizer.The surface plasma band transition was monitored along with time in the reaction mixture for three sets of experiments by ultraviolet-visible spectroscopy.Analysis of the data with the Avrami equation yielded n exponent with values between 0.5 and 1.5,demonstrating three-dimensional heterogeneous nucleation and diffusion-controlled growth,accompanied by soft impingement effect.XRD and TEM analyses show a softly agglomerated polycrystalline state and a nearly spherical morphology (<50 nm) of nanoparticles.The FT-IR result indicates that the PAA molecular structure could be hardly influenced by the formation of nanoparticles.
基金Project(N110402015) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012M510075) supported by China Postdoctoral Science Foundation
文摘Mid-infrared transmittance of submicron silver slit arrays was numerically studied with the finite difference time domain method. The slit width varies from 50 nm to 300 nm and a square feature may attach at either or both slit sides. Although the side length of features is one or two orders of magnitude shorter than the wavelength, the attached nanoscale features can modify the transmittance significantly. The transmittance was also further investigated in detail by looking into the electromagnetic fields and Poynting vectors of selected slit geometries. The investigation results show that such change can be attributed to the cavity resonance effect inside the slit arrays. The work is of great importance to the wavelength-selective devices design in optical devices and thermal application fields.