The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biom...The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed.展开更多
Betel nut is the dry and mature seed of Areca catechu L.,which is originated in Malaysia and cultivated in Yunnan,Hainan and Taiwan and other tropical areas of China.It is also known as big belly,binmen,olive seed,gre...Betel nut is the dry and mature seed of Areca catechu L.,which is originated in Malaysia and cultivated in Yunnan,Hainan and Taiwan and other tropical areas of China.It is also known as big belly,binmen,olive seed,green seed and so on.Betel nut is a dual-use resource for medicine and food,which was first contained in LI Dang′s Pharmaceutical Record.Betel nut tastes bitter,pungent,warm in nature,and belongs to the stomach and large intestine meridian.It contains a variety of chemical components such as alkaloids,phenolic compounds,polysaccharides,fatty acids,amino acids, flavonoids, minerals, terpenoids, and steroids. It has the advantages of promoting digestion, lowering blood pres sure, anti-depression, anti-oxidation, anti-inflammatory, and anti-parasites, antibacterial and other activities. The content of total phenols in fresh fruits of areca nut was 31.1%, mainly including catechin, isorhamnetin, chrysopanthoxanthin, luteolin, tannin and other polyphenols. The commonly used methods for determination of polyphenols in areca are vanil lin titration potassium permanganate titration and potassium ferricyanide spectrophotometry. The main activities and mechanisms of areca polyphenols include: ① Antidepressant effect: polyphenols bind to monoamine oxidase type A (MAO-A) receptors that inhibit the production of neurotransmitters, thereby increasing the content of amine transmitters in the brain and playing a therapeutic effect on depression. ② Antioxidant effect: polyphenols contain multiple adjacent hydroxyl groups, which are easily oxidized and can effectively remove superoxide anion free radical, hydroxyl free radi cal, 1,1-diphenyl-2-picrylhydrazyl radical, showing good antioxidant activity. ③ Bacteriostatic effect: polyphenols can spe cifically bind to the surface of bacteria, thus achieving bacteriostatic effect. Studies have found that betel nut polyphenols have varying degrees of inhibitory effects on a variety of bacteria. ④ Inducing apoptosis of lymphocytes: polyphenols deplete the mercaptan in lymphocytes and make them unable to survive, thus inducing apoptosis of lymphocytes. ⑤ Anti-aging effect: polyphenols have the effect of anti-hyaluronidase and anti-elastase, so as to protect elastin fiber and pro mote collagen synthesis. ⑥ Anti-allergic effect: studies have found that polyphenols can reduce ovalbumin induced aller gic reactions. ⑦ Other functions: betel nut can freshen breath, eliminate bad breath, and resist the activity of cobra venom. At present, domestic and foreign scholars′ research on betel nut mainly focuses on arecoline and its carcinogenicity, mutagenicity, effects on reproductive function, addiction and toxicity to the nervous system, and there are few studies on the positive effects of betel nut, especially on it. There is less research on phenolic ingredients. Therefore, this article reviews the polyphenolic chemical constituents of betel nut, and fully excavates its pharmacological activity to provide a reasonable basis for the scientific use of betel nut.展开更多
The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary dr...The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary drumfiring,microwave,steam-blasting),rolling process(weight of rolling,gently press rolling and traditional rolling),drying process(stove drying,roasting dehydration,baked fried drying) were adopted.The effect of different tea processing technology on the retention rate of catechins component and tea polyphenol was analyzed.It showed that the microwave fixation process,gently press rolling process,baked fried dry process were beneficial to keep high levels of EGCG,C,EGC,EC,ECG.展开更多
Tea polyphenols is a natural antioxidant with a variety of biological activity.However,the weak liposolubility and low bioavailability limit their application.As a result,structural modification of tea polyphenols com...Tea polyphenols is a natural antioxidant with a variety of biological activity.However,the weak liposolubility and low bioavailability limit their application.As a result,structural modification of tea polyphenols comes into being.The prepared liposoluble tea polyphenols was suggested as a good candidate antioxidant for edible-oil and fats products.But,safety studies on liposoluble tea polyphenols are limited.The objective of the present study was conducted to synthesize liposoluble tea polyphenols and evaluate its toxicity in Sprague-Dawley rats on oral administration at dietary levels of 1,2 and 4% for 30 days.There were no adverse effects on general condition,growth,food intake,feed conversion efficiency,haematology parameters,clinical chemistry values and organ weights.High-dose males exhibited a higher haemoglobin concentration and a lower alanine aminotransferase levels,and high-dose females showed a lower albumin and globulin levels.These slight changes were considered of no toxicological significance.Necropsy and histopathology findings revealed no treatment-related changes in any of the organs.Thus,the results allowed us to conclude that the liposoluble tea polyphenols properly utilized in the oral administration could be devoid of any toxic risk.展开更多
文摘The burgeoning development of nanomedicine has provided state-of-the-art technologies and innovative methodologies for contemporary biomedical research,presenting unprecedented opportunities for resolving pivotal biomedical challenges.Nanomaterials possess distinctive structures and properties.Through the exploration of the fabrication of emerging nanomedicines,multiple functions can be integrated to enable more precise diagnosis and treatment,thereby compensating for the limitations of traditional treatment modalities.Among various substances,polyphenols are natural organic compounds classified as plant secondary metabolites and are ubiquitously present in vegetables,teas,and other plants.Polyphenols are rich in active groups,including hydroxyl,carboxyl,amino,and conjugated double bonds.They exhibit robust adhesion,antioxidant,anti-inflammatory,and antibacterial biological activities and are extensively applied in pharmaceutical formulations.Additionally,polyphenols are characterized by their low cost,ready availability,and do not necessitate intricate chemical synthesis processes.Nevertheless,when natural polyphenol-based nanomedicines are utilized in isolation,they encounter several issues.These include poor water solubility,feeble stability,low bioavailability,the requirement for high dosages,and difficulties in precisely reaching the site of action.To address these concerns,researchers have developed nanomedicines by combining metal ions and functional ligands through metal coordination strategies.Nanomaterials,owing to their unique electronic and optical properties,have been successfully introduced into the realm of medical biology.Nano preparations not only enhance the stability of natural products but also endow them with targeting capabilities,thus enabling precise drug delivery.Polyphenols can further synergize with metal ions,anti-cancer drugs,or photosensitizers via supramolecular interactions to achieve multifunctional synergistic therapies,such as targeted drug delivery,efficacy enhancement,and the construction of engineering scaffolds.Metal-Polyphenol Coordination Polymers(MPCPs),composed of metal ions and phenolic ligands,are regarded as ideal nanoplatforms for disease diagnosis and treatment.In recent years,MPCPs have attracted extensive research in the biomedical field on account of their advantages,including facile synthesis,adjustable structure,excellent biocompatibility,and pH responsiveness.In this review,the classification and preparation strategies of MPCPs were systematically presented.Subsequently,their remarkable achievements in biomedical domains,such as bioimaging,biosensing,drug delivery,tumor therapy,and antimicrobial applications were highlighted.Finally,the principal limitations and prospects of MPCPs were comprehensi vely discussed.
基金Fund of Dean of Huachuang Institute of Areca Research-Hainan(HCBL2020YZ-012)。
文摘Betel nut is the dry and mature seed of Areca catechu L.,which is originated in Malaysia and cultivated in Yunnan,Hainan and Taiwan and other tropical areas of China.It is also known as big belly,binmen,olive seed,green seed and so on.Betel nut is a dual-use resource for medicine and food,which was first contained in LI Dang′s Pharmaceutical Record.Betel nut tastes bitter,pungent,warm in nature,and belongs to the stomach and large intestine meridian.It contains a variety of chemical components such as alkaloids,phenolic compounds,polysaccharides,fatty acids,amino acids, flavonoids, minerals, terpenoids, and steroids. It has the advantages of promoting digestion, lowering blood pres sure, anti-depression, anti-oxidation, anti-inflammatory, and anti-parasites, antibacterial and other activities. The content of total phenols in fresh fruits of areca nut was 31.1%, mainly including catechin, isorhamnetin, chrysopanthoxanthin, luteolin, tannin and other polyphenols. The commonly used methods for determination of polyphenols in areca are vanil lin titration potassium permanganate titration and potassium ferricyanide spectrophotometry. The main activities and mechanisms of areca polyphenols include: ① Antidepressant effect: polyphenols bind to monoamine oxidase type A (MAO-A) receptors that inhibit the production of neurotransmitters, thereby increasing the content of amine transmitters in the brain and playing a therapeutic effect on depression. ② Antioxidant effect: polyphenols contain multiple adjacent hydroxyl groups, which are easily oxidized and can effectively remove superoxide anion free radical, hydroxyl free radi cal, 1,1-diphenyl-2-picrylhydrazyl radical, showing good antioxidant activity. ③ Bacteriostatic effect: polyphenols can spe cifically bind to the surface of bacteria, thus achieving bacteriostatic effect. Studies have found that betel nut polyphenols have varying degrees of inhibitory effects on a variety of bacteria. ④ Inducing apoptosis of lymphocytes: polyphenols deplete the mercaptan in lymphocytes and make them unable to survive, thus inducing apoptosis of lymphocytes. ⑤ Anti-aging effect: polyphenols have the effect of anti-hyaluronidase and anti-elastase, so as to protect elastin fiber and pro mote collagen synthesis. ⑥ Anti-allergic effect: studies have found that polyphenols can reduce ovalbumin induced aller gic reactions. ⑦ Other functions: betel nut can freshen breath, eliminate bad breath, and resist the activity of cobra venom. At present, domestic and foreign scholars′ research on betel nut mainly focuses on arecoline and its carcinogenicity, mutagenicity, effects on reproductive function, addiction and toxicity to the nervous system, and there are few studies on the positive effects of betel nut, especially on it. There is less research on phenolic ingredients. Therefore, this article reviews the polyphenolic chemical constituents of betel nut, and fully excavates its pharmacological activity to provide a reasonable basis for the scientific use of betel nut.
文摘The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary drumfiring,microwave,steam-blasting),rolling process(weight of rolling,gently press rolling and traditional rolling),drying process(stove drying,roasting dehydration,baked fried drying) were adopted.The effect of different tea processing technology on the retention rate of catechins component and tea polyphenol was analyzed.It showed that the microwave fixation process,gently press rolling process,baked fried dry process were beneficial to keep high levels of EGCG,C,EGC,EC,ECG.
基金Project of the National Twelfth-Five Year Research Program of China(2012BAD36B06)
文摘Tea polyphenols is a natural antioxidant with a variety of biological activity.However,the weak liposolubility and low bioavailability limit their application.As a result,structural modification of tea polyphenols comes into being.The prepared liposoluble tea polyphenols was suggested as a good candidate antioxidant for edible-oil and fats products.But,safety studies on liposoluble tea polyphenols are limited.The objective of the present study was conducted to synthesize liposoluble tea polyphenols and evaluate its toxicity in Sprague-Dawley rats on oral administration at dietary levels of 1,2 and 4% for 30 days.There were no adverse effects on general condition,growth,food intake,feed conversion efficiency,haematology parameters,clinical chemistry values and organ weights.High-dose males exhibited a higher haemoglobin concentration and a lower alanine aminotransferase levels,and high-dose females showed a lower albumin and globulin levels.These slight changes were considered of no toxicological significance.Necropsy and histopathology findings revealed no treatment-related changes in any of the organs.Thus,the results allowed us to conclude that the liposoluble tea polyphenols properly utilized in the oral administration could be devoid of any toxic risk.