Composite microcrystals of the nitramines(NAs)viz.,RDX,HMX,BCHMX,and CL-20 with electrically conductive polyaniline(PANi)are a charge transfer complexes in coagglomerated composite crystals(CACs).The activation energi...Composite microcrystals of the nitramines(NAs)viz.,RDX,HMX,BCHMX,and CL-20 with electrically conductive polyaniline(PANi)are a charge transfer complexes in coagglomerated composite crystals(CACs).The activation energies of thermolysis,E_(a),of the pure NAs and their PANi-CACs were determined using the Kissinger method,and decomposition processes are discussed.Except for the RDX/PANi CACs,all the other CACs show higher E_(a) values for decomposition compared to their pure NA counterparts.For all CACs,relationships are specified between the E_(a) values,on the one hand,and the squares of the detonation velocities,enthalpies of formation,spark energy and impact sensitivities,on the other.The relationships between their low-temperature heats of decomposition,ΔH,from DSC,and their enthalpy of formation,logarithm of impact sensitivity,electric spark energy,as well as detonation energy,are described.The PANi favorably influences the density of the corresponding CACs;surprisingly close linear correlations were found,and explained,between these densities and the E_(a) values.This presence of PANi strongly increased the electrical spark sensitivity of the CACs in comparison to the base NAs.Based on the results obtained,it can be noted in particular the exceptional desensitization of HMX to impact and the increased sensitivity to electrical spark by coating its crystals with polyaniline.展开更多
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ...The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring.展开更多
Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon e...Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (REs) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that EtgNBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPFr.展开更多
H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiP...H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability.展开更多
Iron(Ⅱ) tetrasulfophthalocyanine(FeTSPc) ,as a novel mimetic enzyme of peroxidase,was used in the synthesis of a conducting polyaniline(PANI) /sodium dodecylsulfate(SDS) complex in SDS aqueous micellar solutions. The...Iron(Ⅱ) tetrasulfophthalocyanine(FeTSPc) ,as a novel mimetic enzyme of peroxidase,was used in the synthesis of a conducting polyaniline(PANI) /sodium dodecylsulfate(SDS) complex in SDS aqueous micellar solutions. The effects of pH,concentrations of aniline,SDS and H2O2,and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH(0.5-4.0) is required to produce the conducting PANI,and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline,SDS and H2O2 in feed,and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L,10 mmol/L,25 mmol/L,and 15 h. FT-IR spectrum,elemental analysis,conductivity,cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.展开更多
A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and ...A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition ofpH 5.5, 0.8 V and 65℃.展开更多
In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that...In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that the PANI modification,especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance.The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance.A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC,which is 8.1 times higher than that of control.The PANI-Mn anode BMFC also gives a favorable maximum power density(16.78 mW/m2).Fe or Mn modification has better effect in improving the conductivity of polyaniline,thus improving the energy output of BMFCs.This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC.展开更多
基金funding from the Student Grant Project no.SGS_2022_003 of the Faculty of Chemical Technology at the University of Pardubice Czechia.
文摘Composite microcrystals of the nitramines(NAs)viz.,RDX,HMX,BCHMX,and CL-20 with electrically conductive polyaniline(PANi)are a charge transfer complexes in coagglomerated composite crystals(CACs).The activation energies of thermolysis,E_(a),of the pure NAs and their PANi-CACs were determined using the Kissinger method,and decomposition processes are discussed.Except for the RDX/PANi CACs,all the other CACs show higher E_(a) values for decomposition compared to their pure NA counterparts.For all CACs,relationships are specified between the E_(a) values,on the one hand,and the squares of the detonation velocities,enthalpies of formation,spark energy and impact sensitivities,on the other.The relationships between their low-temperature heats of decomposition,ΔH,from DSC,and their enthalpy of formation,logarithm of impact sensitivity,electric spark energy,as well as detonation energy,are described.The PANi favorably influences the density of the corresponding CACs;surprisingly close linear correlations were found,and explained,between these densities and the E_(a) values.This presence of PANi strongly increased the electrical spark sensitivity of the CACs in comparison to the base NAs.Based on the results obtained,it can be noted in particular the exceptional desensitization of HMX to impact and the increased sensitivity to electrical spark by coating its crystals with polyaniline.
基金supported by the National Natural Science Foundation of China(Grant No.22305123)。
文摘The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring.
基金Project(2008AA03Z207) supported by the National High-Tech Research and Development Program of China
文摘Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (REs) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that EtgNBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPFr.
基金Project(2008AA03Z207) supported by the National Hi-tech Research and Development Program of China
文摘H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability.
基金Project(07JJ6020) supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2007-24-3) supported by the Huaihua Key Science and Technology Program, China
文摘Iron(Ⅱ) tetrasulfophthalocyanine(FeTSPc) ,as a novel mimetic enzyme of peroxidase,was used in the synthesis of a conducting polyaniline(PANI) /sodium dodecylsulfate(SDS) complex in SDS aqueous micellar solutions. The effects of pH,concentrations of aniline,SDS and H2O2,and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH(0.5-4.0) is required to produce the conducting PANI,and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline,SDS and H2O2 in feed,and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L,10 mmol/L,25 mmol/L,and 15 h. FT-IR spectrum,elemental analysis,conductivity,cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.
基金Projects(50473022, 20673036) supported by the National Natural Science Foundation of China project(2005) supported by the State Key Laboratory of Chemo/Biosensing and Chemometrics of China+1 种基金 project(2006FJ4100) supported by the Science Technology Project of Hunan Province project(2006) supported by the Postdoctor Foundation of Hunan University
文摘A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition ofpH 5.5, 0.8 V and 65℃.
基金Project(HIT.NSRIF.2014128)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014M551257)supported by the China Postdoctoral Science FoundationProject(WH20150208)supported by the Subject Development Foundation of Harbin Institute of Technology at Weihai,China
文摘In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that the PANI modification,especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance.The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance.A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC,which is 8.1 times higher than that of control.The PANI-Mn anode BMFC also gives a favorable maximum power density(16.78 mW/m2).Fe or Mn modification has better effect in improving the conductivity of polyaniline,thus improving the energy output of BMFCs.This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC.