As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude redu...As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.展开更多
Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co n...Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co ntinues to be major challenges for industries in addressing accuracy improvement . This study presents a method of improving machining accuracy in ECM by using a dual pole tool with a metallic bush outside the insulated coating of a cathode tool. The bush is connected with anode and so the electric field at the side gap area is substantially weakened. The modeling and simulation indicate that the p ositive bush brings down the current density at the side gap area of the machine d hole and hence reduces the stray material removal there. It has been experimen tally observed that the machining accuracy and the process stability are signifi cantly improved.展开更多
The casting-forging combined technique and the closed die forging without flash-less are both new developed material working methods. The former can not only decrease forming operations of forgings, but also increase ...The casting-forging combined technique and the closed die forging without flash-less are both new developed material working methods. The former can not only decrease forming operations of forgings, but also increase the material utilization ratio. Therefore, it is applied to produce more complex forgings. The latter is required for forging precise parts without burrs. The alternator pole is a complex forging, which was usually produced by hot forging, upsetting-extrusion or upsetting-extrusion and bending processes. During these processes, not only the forming force is higher, but the material of burrs accounts for 30 percent or so of total required material. And burrs are difficult to remove in the sequential machining process. In accordance with defects exiting in current manufacturing of alternator poles by upsetting-extruding process, such as more material demand, higher forming force and difficulty of next machining, a casting-forging precision process of alternator poles was developed and investigated in this paper. In the process, the pole was formed by two operations. One is the pre-forming operation by casting. The other is the final forming operation by the closed precision forging process. This can not only shorten processes, decrease material and power demand, but also increase precision of forgings. First, the casting blocker was designed considering the casting process and the forging ratio and the mode of deformation. Then the die structure for closed precision forging was designed, and the closing device for forging dies with spring assemblies in order to provide the necessary closing force was also designed. Finally the forming processes was investigated by test and numerical simulation method to optimum process parameters and die structure design parameters. The result can provide basis for applying the process to manufacture poles in practice.展开更多
A neuromorphic continuous-time state space pole assignment adaptive controller is proposed, which is particularlyappropriate for controlling a large-scale time-variant state-space model due to the parallely distribute...A neuromorphic continuous-time state space pole assignment adaptive controller is proposed, which is particularlyappropriate for controlling a large-scale time-variant state-space model due to the parallely distributed nature ofneurocomputing. In our approach, Hopfield neural network is exploited to identify the parameters of a continuous-timestate-space model, and a dedicated recurrent neural network is designed to compute pole placement feedback control law inreal time. Thus the identification and the control computation are incorporated in the closed-loop, adaptive, real-timecontrol system. The merit of this approach is that the neural networks converge to their solutions very quickly andsimultaneously.展开更多
The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Bas...In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.展开更多
文摘As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.
文摘Electrochemical machining (ECM) is one of the best al ternatives for producing complex shapes in advanced materials used in aircraft a nd aerospace industries. However, the reduction of the stray material removal co ntinues to be major challenges for industries in addressing accuracy improvement . This study presents a method of improving machining accuracy in ECM by using a dual pole tool with a metallic bush outside the insulated coating of a cathode tool. The bush is connected with anode and so the electric field at the side gap area is substantially weakened. The modeling and simulation indicate that the p ositive bush brings down the current density at the side gap area of the machine d hole and hence reduces the stray material removal there. It has been experimen tally observed that the machining accuracy and the process stability are signifi cantly improved.
文摘The casting-forging combined technique and the closed die forging without flash-less are both new developed material working methods. The former can not only decrease forming operations of forgings, but also increase the material utilization ratio. Therefore, it is applied to produce more complex forgings. The latter is required for forging precise parts without burrs. The alternator pole is a complex forging, which was usually produced by hot forging, upsetting-extrusion or upsetting-extrusion and bending processes. During these processes, not only the forming force is higher, but the material of burrs accounts for 30 percent or so of total required material. And burrs are difficult to remove in the sequential machining process. In accordance with defects exiting in current manufacturing of alternator poles by upsetting-extruding process, such as more material demand, higher forming force and difficulty of next machining, a casting-forging precision process of alternator poles was developed and investigated in this paper. In the process, the pole was formed by two operations. One is the pre-forming operation by casting. The other is the final forming operation by the closed precision forging process. This can not only shorten processes, decrease material and power demand, but also increase precision of forgings. First, the casting blocker was designed considering the casting process and the forging ratio and the mode of deformation. Then the die structure for closed precision forging was designed, and the closing device for forging dies with spring assemblies in order to provide the necessary closing force was also designed. Finally the forming processes was investigated by test and numerical simulation method to optimum process parameters and die structure design parameters. The result can provide basis for applying the process to manufacture poles in practice.
文摘A neuromorphic continuous-time state space pole assignment adaptive controller is proposed, which is particularlyappropriate for controlling a large-scale time-variant state-space model due to the parallely distributed nature ofneurocomputing. In our approach, Hopfield neural network is exploited to identify the parameters of a continuous-timestate-space model, and a dedicated recurrent neural network is designed to compute pole placement feedback control law inreal time. Thus the identification and the control computation are incorporated in the closed-loop, adaptive, real-timecontrol system. The merit of this approach is that the neural networks converge to their solutions very quickly andsimultaneously.
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
基金Projects(U1334205,51205418)supported by the National Natural Science Foundation of ChinaProject(2014T002-A)supported by the Science and Technology Research Program of China Railway CorporationProject(132014)supported by the Fok Ying Tong Education Foundation of China
文摘In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.