期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Proximal point algorithm for a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings
1
作者 李红刚 《Journal of Chongqing University》 CAS 2008年第1期79-84,共6页
We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approx... We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108. 展开更多
关键词 variational inclusion (H η)-monotone mapping resolvent operator technique fuzzy set-valued mapping proximal point algorithm convergence of numerical methods
在线阅读 下载PDF
Natural forest ALS-TLS point cloud data registration without control points 被引量:1
2
作者 Jianpeng Zhang Jinliang Wang +3 位作者 Feng Cheng Weifeng Ma Qianwei Liu Guangjie Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期809-820,共12页
Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information belo... Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively. 展开更多
关键词 Airborne laser scanning(ALS) Terrestrial laser scanning(TLS) REGISTRATION Natural forest Iterative closest point(ICP)algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部