In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d...In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.展开更多
A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the princi...A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.展开更多
'随着各家车企都在新能源领域进行着自己的努力,似乎再不行动的汽车品牌就会被这个时代抛弃。日前,在中国已很少见却在欧洲混得风生水起的欧宝推出了旗下首款插电混合动力车型——Grandland X Plug-in Hybrid4,正如其名称所写的那样...'随着各家车企都在新能源领域进行着自己的努力,似乎再不行动的汽车品牌就会被这个时代抛弃。日前,在中国已很少见却在欧洲混得风生水起的欧宝推出了旗下首款插电混合动力车型——Grandland X Plug-in Hybrid4,正如其名称所写的那样,新车型是基于Grandland X打造而来。'展开更多
Hybrid Gel is the emerging soft matter in food applications that attracted the attention of food scientists owing to its beneficial characteristics as a substitute for saturated fat.The beneficial characteristics like...Hybrid Gel is the emerging soft matter in food applications that attracted the attention of food scientists owing to its beneficial characteristics as a substitute for saturated fat.The beneficial characteristics like good rheological,mechanical,thermal,and oxidative stability can be achieved using proper synergism between the individual phases.The variation in the oleogel/hydrogel phases can affect the mechanical strength of Hybrid Gel;an increase in the oleogel phase enhances the strength of Hybrid Gel.The incorporation of components like nanoparticles and colloidal particles further strengthens the gel system by enhancing the storage modulus,gel stability,oil-holding capacity,firmness,and hardness.Such Hybrid Gels can be used as a substitute for saturated fat that gives good functional,textural,and sensory attributes to the final product as compared with the saturated fat and has received positive consumer acceptance.The main objective of this concise review is to explore Hybrid Gel,understand conventional and unconventional Hybrid Gel systems,their important characteristics,and their application as a potential substitute for saturated fat in processed food products.展开更多
Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to...Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias.展开更多
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping...Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).展开更多
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev...Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information.展开更多
This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power pro...This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.展开更多
In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to ...In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to the selfsupervised approach to eliminate the need for labels,thus avoiding the accompanied high cost of data collection and annotation.We first construct the dense connection network(DCnet)with three modules:the feature extraction module for extracting channel characteristic from a large amount of channel data,the feature fusion module for combining multidimensional features,and the prediction module for generating the HBF matrices.Next,we establish a lightweight network architecture,named as LDnet,to reduce the number of model parameters and computational complexity.The proposed sub-6GHz assisted approach eliminates mmWave pilot resources compared to the method using mmWave channel information directly.The simulation results indicate that the proposed DCnet and LDnet can achieve the spectral efficiency that is superior to the traditional orthogonal matching pursuit(OMP)algorithm by 13.66% and 10.44% under LOS scenarios and by 32.35% and 27.75% under NLOS scenarios,respectively.Moreover,the LDnet achieves 98.52% reduction in the number of model parameters and 22.93% reduction in computational complexity compared to DCnet.展开更多
The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to case...The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.展开更多
Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ...Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.展开更多
The high thermal conductivity of the nanoparticles in hybrid nanofluids results in enhanced thermal conductivity associated with their base fluids.Enhanced heat transfer is a result of this high thermal conductivity,w...The high thermal conductivity of the nanoparticles in hybrid nanofluids results in enhanced thermal conductivity associated with their base fluids.Enhanced heat transfer is a result of this high thermal conductivity,which has significant applications in heat exchangers and engineering devices.To optimize heat transfer,a liquid film of Cu and TiO_(2)hybrid nanofluid behind a stretching sheet in a variable porous medium is being considered due to its importance.The nature of the fluid is considered time-dependent and the thickness of the liquid film is measured variable adjustable with the variable porous space and favorable for the uniform flow of the liquid film.The solution of the problem is acquired using the homotopy analysis method HAM,and the artificial neural network ANN is applied to obtain detailed information in the form of error estimation and validations using the fitting curve analysis.HAM data is utilized to train the ANN in this study,which uses Cu and TiO_(2)hybrid nanofluids in a variable porous space for unsteady thin film flow,and it is used to train the ANN.The results indicate that Cu and TiO_(2)play a greater role in boosting the rate.展开更多
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro...Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.展开更多
文摘In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.
基金Supported by China Automobile Test Cycle Development Project(CATC2015)
文摘A variable parameter self-adaptive control strategy based on driving condition identification is proposed to take full advantage of the fuel saving potential of the plug-in hybrid electric bus(PHEB).Firstly,the principal component analysis(PCA)and the fuzzy c-means clustering(FCM)algorithm is used to construct the comprehensive driving cycle,congestion driving cycle,urban driving cycle and suburban driving cycle of Chinese urban buses.Secondly,an improved particle swarm optimization(IPSO)algorithm is proposed,and is used to optimize the control parameters of PHEB under different driving cycles,respectively.Then,the variable parameter self-adaptive control strategy based on driving condition identification is given.Finally,for an actual running vehicle,the driving condition is identified by relevance vector machine(RVM),and the corresponding control parameters are selected to control the vehicle.The simulation results show that the fuel consumption of using the variable parameter self-adaptive control strategy is reduced by 4.2% compared with that of the fixed parameter control strategy,and the feasibility of the variable parameter self-adaptive control strategy is verified.
文摘Hybrid Gel is the emerging soft matter in food applications that attracted the attention of food scientists owing to its beneficial characteristics as a substitute for saturated fat.The beneficial characteristics like good rheological,mechanical,thermal,and oxidative stability can be achieved using proper synergism between the individual phases.The variation in the oleogel/hydrogel phases can affect the mechanical strength of Hybrid Gel;an increase in the oleogel phase enhances the strength of Hybrid Gel.The incorporation of components like nanoparticles and colloidal particles further strengthens the gel system by enhancing the storage modulus,gel stability,oil-holding capacity,firmness,and hardness.Such Hybrid Gels can be used as a substitute for saturated fat that gives good functional,textural,and sensory attributes to the final product as compared with the saturated fat and has received positive consumer acceptance.The main objective of this concise review is to explore Hybrid Gel,understand conventional and unconventional Hybrid Gel systems,their important characteristics,and their application as a potential substitute for saturated fat in processed food products.
基金The National Key Research and Development Program of China(Grant No.2021YFD2201203)the 5·5 Engineering Research&Innovation Team Project of Beijing Forestry University(No.BLRC2023C05)the Key Research and Development Program of Shandong Province(No.2021SFGC02050102)。
文摘Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias.
基金the project SILVARSTAR funded from the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 101015442。
文摘Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).
文摘Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information.
基金supported by National Natural Science Foundation of China(62263014)Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443).
文摘This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season.
基金supported in part by the National Natural Science Foundation of China under Grants 62325107,62341107,62261160650,and U23A20272in part by the Beijing Natural Science Foundation under Grant L222002.
文摘In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to the selfsupervised approach to eliminate the need for labels,thus avoiding the accompanied high cost of data collection and annotation.We first construct the dense connection network(DCnet)with three modules:the feature extraction module for extracting channel characteristic from a large amount of channel data,the feature fusion module for combining multidimensional features,and the prediction module for generating the HBF matrices.Next,we establish a lightweight network architecture,named as LDnet,to reduce the number of model parameters and computational complexity.The proposed sub-6GHz assisted approach eliminates mmWave pilot resources compared to the method using mmWave channel information directly.The simulation results indicate that the proposed DCnet and LDnet can achieve the spectral efficiency that is superior to the traditional orthogonal matching pursuit(OMP)algorithm by 13.66% and 10.44% under LOS scenarios and by 32.35% and 27.75% under NLOS scenarios,respectively.Moreover,the LDnet achieves 98.52% reduction in the number of model parameters and 22.93% reduction in computational complexity compared to DCnet.
基金supported by the National Natural Science Foundation of China(No.12305344)the 2023 Anhui university research project of China(No.2023AH052179).
文摘The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.
基金supported via funding from Prince Sattam bin Abdulaziz University(Grant No.PSAU/2024/R/1446)。
文摘Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.
文摘The high thermal conductivity of the nanoparticles in hybrid nanofluids results in enhanced thermal conductivity associated with their base fluids.Enhanced heat transfer is a result of this high thermal conductivity,which has significant applications in heat exchangers and engineering devices.To optimize heat transfer,a liquid film of Cu and TiO_(2)hybrid nanofluid behind a stretching sheet in a variable porous medium is being considered due to its importance.The nature of the fluid is considered time-dependent and the thickness of the liquid film is measured variable adjustable with the variable porous space and favorable for the uniform flow of the liquid film.The solution of the problem is acquired using the homotopy analysis method HAM,and the artificial neural network ANN is applied to obtain detailed information in the form of error estimation and validations using the fitting curve analysis.HAM data is utilized to train the ANN in this study,which uses Cu and TiO_(2)hybrid nanofluids in a variable porous space for unsteady thin film flow,and it is used to train the ANN.The results indicate that Cu and TiO_(2)play a greater role in boosting the rate.
文摘Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.