Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic pro...Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU.展开更多
The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition de...The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.展开更多
The plasma temperature of the semiconductor bridge (SCB) was measured in real-time according to relative intensity ratio of dual lines of atomic emission spectrum.The plasma temperature under different discharge pulse...The plasma temperature of the semiconductor bridge (SCB) was measured in real-time according to relative intensity ratio of dual lines of atomic emission spectrum.The plasma temperature under different discharge pulses and the influence of discharge pulse energy on it were studied.The results show that the plasma peak temperature rises gradually with the increase of initial discharging voltage and charging capacitance.For the capacitance of 22 μF,if the initial discharging voltage increases from 21 V to 63 V,the plasma peak temperature rises from 2 000 K to 6 200 K.For the discharging voltage of 39 V,the peak temperature rises from 2 200 K to 3 800 K when the capacitance increases from 6.8 μF to 100 μF.The change of pulse discharge has a very small effect on the plasma temperature at the late time discharge (LTD).In view of the change of plasma temperature with the pulse energy,the discharging voltage has a greater effect on the plasma temperature than the capacitance.The results provide some experimental basis for the further research on SCB ignition and detonation mechanisms.展开更多
基金Projects(61170049,60903044)supported by National Natural Science Foundation of ChinaProject(2012AA010903)supported by National High Technology Research and Development Program of China
文摘Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU.
文摘The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.
基金Sponsored by the Anhui Province Colleges Young Talents Fund(2011SQRL121)
文摘The plasma temperature of the semiconductor bridge (SCB) was measured in real-time according to relative intensity ratio of dual lines of atomic emission spectrum.The plasma temperature under different discharge pulses and the influence of discharge pulse energy on it were studied.The results show that the plasma peak temperature rises gradually with the increase of initial discharging voltage and charging capacitance.For the capacitance of 22 μF,if the initial discharging voltage increases from 21 V to 63 V,the plasma peak temperature rises from 2 000 K to 6 200 K.For the discharging voltage of 39 V,the peak temperature rises from 2 200 K to 3 800 K when the capacitance increases from 6.8 μF to 100 μF.The change of pulse discharge has a very small effect on the plasma temperature at the late time discharge (LTD).In view of the change of plasma temperature with the pulse energy,the discharging voltage has a greater effect on the plasma temperature than the capacitance.The results provide some experimental basis for the further research on SCB ignition and detonation mechanisms.