期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fast weighting method for plasma PIC simulation on GPU-accelerated heterogeneous systems 被引量:2
1
作者 杨灿群 吴强 +3 位作者 胡慧俐 石志才 陈娟 唐滔 《Journal of Central South University》 SCIE EI CAS 2013年第6期1527-1535,共9页
Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic pro... Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU. 展开更多
关键词 GPU computing heterogeneous computing plasma physics simulations particle-in-cell (PIC)
在线阅读 下载PDF
Research on 2D Model of Capillary Discharge Plasma
2
作者 张玉成 蒋树君 +2 位作者 李兴文 李瑞 严文荣 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期241-246,共6页
The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition de... The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works. 展开更多
关键词 plasma physics capillary discharge plasma plasma ignition physical process MHD method steady state model electro-thermal-chemical gun
在线阅读 下载PDF
Experimental Study on Plasma Temperature of Semiconductor Bridge
3
作者 吴蓉 朱顺官 +2 位作者 张琳 李燕 冯红艳 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第1期35-40,共6页
The plasma temperature of the semiconductor bridge (SCB) was measured in real-time according to relative intensity ratio of dual lines of atomic emission spectrum.The plasma temperature under different discharge pulse... The plasma temperature of the semiconductor bridge (SCB) was measured in real-time according to relative intensity ratio of dual lines of atomic emission spectrum.The plasma temperature under different discharge pulses and the influence of discharge pulse energy on it were studied.The results show that the plasma peak temperature rises gradually with the increase of initial discharging voltage and charging capacitance.For the capacitance of 22 μF,if the initial discharging voltage increases from 21 V to 63 V,the plasma peak temperature rises from 2 000 K to 6 200 K.For the discharging voltage of 39 V,the peak temperature rises from 2 200 K to 3 800 K when the capacitance increases from 6.8 μF to 100 μF.The change of pulse discharge has a very small effect on the plasma temperature at the late time discharge (LTD).In view of the change of plasma temperature with the pulse energy,the discharging voltage has a greater effect on the plasma temperature than the capacitance.The results provide some experimental basis for the further research on SCB ignition and detonation mechanisms. 展开更多
关键词 plasma physics semiconductor bridge plasma temperature atomic emission spectrometry discharge pulse
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部