Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of th...Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.展开更多
The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition de...The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.展开更多
An arc model considering deviations from thermodynamic and chemical equilibrium has been developed in order to achieve a better understanding of the arc plasma close to material surfaces.The model is based on unified ...An arc model considering deviations from thermodynamic and chemical equilibrium has been developed in order to achieve a better understanding of the arc plasma close to material surfaces.The model is based on unified consideration of the thermionic tungsten cathode,the arc region and the flat anode made of copper.The heat transfer within the electrodes is coupled with the plasma through the energy fluxes onto the electrode boundaries.Electrical characteristics of an 8 mm long free-burning arc are presented along with findings from spectroscopic measurements of the plasma emission in atmospheric pressure argon.The arc current varied from 60 A up to 200 A,and the gas flow rate was set at 12 L/min(at atmospheric pressure,room temperature).展开更多
基金Project supported by Ph.D.Programs Foundation of Ministry of Education of China(20121101120004)Basic Research Foundation of Beijing Institute of Technology(20120142015)
文摘Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.
文摘The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.
文摘An arc model considering deviations from thermodynamic and chemical equilibrium has been developed in order to achieve a better understanding of the arc plasma close to material surfaces.The model is based on unified consideration of the thermionic tungsten cathode,the arc region and the flat anode made of copper.The heat transfer within the electrodes is coupled with the plasma through the energy fluxes onto the electrode boundaries.Electrical characteristics of an 8 mm long free-burning arc are presented along with findings from spectroscopic measurements of the plasma emission in atmospheric pressure argon.The arc current varied from 60 A up to 200 A,and the gas flow rate was set at 12 L/min(at atmospheric pressure,room temperature).