In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
This study proposes a multiple attribute group decisionmaking(MAGDM)approach on the basis of the plant growth simulation algorithm(PGSA)and interval 2-tuple weighted average operators for uncertain linguistic weighted...This study proposes a multiple attribute group decisionmaking(MAGDM)approach on the basis of the plant growth simulation algorithm(PGSA)and interval 2-tuple weighted average operators for uncertain linguistic weighted aggregation(ULWA).We provide an example for illustration and verification and compare several aggregation operators to indicate the optimality of the assembly method.In addition,we present two comparisons to demonstrate the practicality and effectiveness of the proposed method.The method can be used not only to aggregate MAGDM problems but also to solve multi-granularity uncertain linguistic information.Its high reliability,easy programming,and high-speed calculation can improve the efficiency of ULWA characteristics.Finally,the proposed method has the exact characteristics for linguistic information processing and can effectively avoid information distortion and loss.展开更多
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金supported by the National Natural Science Foundation of China(71771118 71471083)+1 种基金the Ministry of Education Humanities and Social Sciences Foundation of China(18YJCZH146)the Nanjing University Double First-Class project
文摘This study proposes a multiple attribute group decisionmaking(MAGDM)approach on the basis of the plant growth simulation algorithm(PGSA)and interval 2-tuple weighted average operators for uncertain linguistic weighted aggregation(ULWA).We provide an example for illustration and verification and compare several aggregation operators to indicate the optimality of the assembly method.In addition,we present two comparisons to demonstrate the practicality and effectiveness of the proposed method.The method can be used not only to aggregate MAGDM problems but also to solve multi-granularity uncertain linguistic information.Its high reliability,easy programming,and high-speed calculation can improve the efficiency of ULWA characteristics.Finally,the proposed method has the exact characteristics for linguistic information processing and can effectively avoid information distortion and loss.