The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the rela...The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.展开更多
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration ...In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.展开更多
COBOT is a new kind of collaborative robot , which can work with people in a shared space. In this paper a new kind of CVT using differential mechanism is introduced, which is major parts of five-bar COBOT and based t...COBOT is a new kind of collaborative robot , which can work with people in a shared space. In this paper a new kind of CVT using differential mechanism is introduced, which is major parts of five-bar COBOT and based the feature of nonhlonnmic constraint. The dynamic model of differential mechanism and five-bar architecture COBOT is founded. There are two kinds of coupled mode of two CVT:serial and parallel. In this paper, we present the dynamic model of serial and parallel COBOT take five-bar COBOT as research object. From the dynamic analysis foregoing, both serial and parallel COBOT model are have the feature of nonholonomic constraint. The ending track and moving state are controlled by the force of control motor and operator. The control motor can not control the movement and ending track of COBOT without the cooperation of operator.展开更多
基金supported by the National Natural Science Foundation of China(No.51275365)the National High-tech R&D Program (863 Program ) (No. 2014AA041504)
文摘The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00607, and 2011CB9328004)the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)+2 种基金the National Natural Science Foundation of China (Grant Nos. 60906004, 60906003,61006087, 61076121, 61176122, and 61106001)the Science and Technology Council of Shanghai, China (Grant Nos. 11DZ2261000 and 11QA1407800)the Chinese Academy of Sciences (Grant No. 20110490761)
文摘In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.
基金the National Natural Science Foundation of China( 60275030) Harbin Science and Technology Bureau(2002AFLXJ004)
文摘COBOT is a new kind of collaborative robot , which can work with people in a shared space. In this paper a new kind of CVT using differential mechanism is introduced, which is major parts of five-bar COBOT and based the feature of nonhlonnmic constraint. The dynamic model of differential mechanism and five-bar architecture COBOT is founded. There are two kinds of coupled mode of two CVT:serial and parallel. In this paper, we present the dynamic model of serial and parallel COBOT take five-bar COBOT as research object. From the dynamic analysis foregoing, both serial and parallel COBOT model are have the feature of nonholonomic constraint. The ending track and moving state are controlled by the force of control motor and operator. The control motor can not control the movement and ending track of COBOT without the cooperation of operator.