In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considerin...In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considering the coal pillar recovery rate and pipeline's safety requirements,two new shaped coal pillar design approaches for subsurface pipelines were developed.Firstly,the deformation limitations for measuring pipeline safety are categorized into two:no deformation is permitted,and deformation is acceptable within elastic limits.Subsequently,integrating the key stratum theory(KST)and cave angle,a fishbone-shaped coal pillar design approach that does not permit pipeline deformation is established.Meanwhile,combined with the ground subsidence and the pipeline's elastic deformation limit,a grille-shaped coal pillar design approach that accepts deformation pipelines within elastic limits is established.Those two new approaches clarify parameters including mined width,coal pillar width and mined length.Finally,the case study shows that the designed mined width,coal pillar width and mined length of the fishbone-shaped coal pillar are 90,80,and 130 m,while those of the grille-shaped are 320,370,and640 m.Compared with the conventional method,the fishbone-shaped and grille-shaped coal pillar design approaches recovered coal pillar resources of 2.65×10~6and 5.81×10~6t on the premise of meeting the pipeline safety requirements,and the recovery rates increased by 20.5%and 45.0%,with expenditures representing only 56.46%and 20.02%of the respective benefits.These new approaches provide managers with diverse options for protecting pipeline safety while promoting coal pillar recovery,which is conducive to the harmonic mining of gas-coal resources.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N...Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier...针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier,CSFRA),来替代传统运放。CSFRA通过引入CMOS开关自偏置和全差分结构,同时在非放大时序中关断电路,降低了残差放大器功耗。基于所提CSFRA,配合可降低开关功耗的检测和跳过切换方案,设计了一款12 Bit 10 MS/s的Pipelined SAR ADC。该电路基于MXIC L18B 180 nm CMOS工艺实现,实验结果表明,在10 MS/s的采样率下,该电路的SFDR和SNDR分别为75.3 dB和61.3 dB,功耗仅为944μW,其中CSFRA功耗仅为368μW。展开更多
Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the r...Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the reduced resolution,providing improved image details that can greatly facilitate scientific discovery.Among these methods,deconvolution techniques are straightforward,yet either require known prior information or struggle to tackle large experimental data.Deep learning(DL)-based super-resolution(SR)methods handle large data well,however data scarcity and model generalizability are problematic.In addition,current image restoration methods are mostly offline and inefficient for many beamlines where high data volumes and data complexity issues are encountered.To overcome these limitations,an online image-restoration pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising.In this study,using both deconvolution and pretrained DL-based SR models,we show that different restoration efficacies can be achieved on different types of synchrotron experimental data.We describe the necessity,feasibility,and significance of constructing such an image-restoration pipeline for future synchrotron experiments.展开更多
During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p...Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.展开更多
During the operation and installation of offshore pipelines, high axial forces and pressures are experienced, and their effects cannot be neglected. In this article, the effect of internal flow velocity and functional...During the operation and installation of offshore pipelines, high axial forces and pressures are experienced, and their effects cannot be neglected. In this article, the effect of internal flow velocity and functional loads on vortex-induced vibration (VIV) response is investigated. On the basis of the Hamilton principle, a differential equation was derived to describe the motion of a pinned-pinned tensioned spanning pipeline conveying fluid. The VIV response was calculated according to DNV-RP-F105 under different functional loads. The results showed that functional loads influence free spanning pipeline VIV response by changing the natural frequency. Internal flow velocity was found less important for VIV response than other functional load factors, such as effective axial force, because the speed in reality is not high enough to be significant. The research may provide a reference for sensitivity studies of the effect of functional loads on allowable free span lengths.展开更多
Aim To design an ASIC based on CORDIC(coordinate rotations digital computer) to meet the requirement of coordinate conversion in high speed radar signal processing. Methods A new pipeline CORDIC architecture easi...Aim To design an ASIC based on CORDIC(coordinate rotations digital computer) to meet the requirement of coordinate conversion in high speed radar signal processing. Methods A new pipeline CORDIC architecture easily realized in VLSI was introduced. Results and Conclusion The results of hardware simulation with FPGA show that the pipeline CORDIC architecture meets the requirement.展开更多
设计实现一种应用于CMOS图像传感器的10bit模数转换器(ADC),采用基于逐次逼近的新型流水线结构(Pipelined SAR ADC).提出了一种优化选取其中高精度倍增数模转换器(MDAC)和单位电容值的解析方法.通过采用第一级高精度、半增益MDAC和动态...设计实现一种应用于CMOS图像传感器的10bit模数转换器(ADC),采用基于逐次逼近的新型流水线结构(Pipelined SAR ADC).提出了一种优化选取其中高精度倍增数模转换器(MDAC)和单位电容值的解析方法.通过采用第一级高精度、半增益MDAC和动态比较器等技术提高了整体电路的线性度,并降低了系统功耗.通过对版图面积的优化设计,满足了CMOS图像传感器对芯片面积的要求.本设计基于180nm CMOS工艺,仿真结果显示电路实现了60.37dB的信噪失真比(SNDR)和76.37dB的无杂散动态范围(SFDR),有效精度(ENOB)达到了9.74bit.ADC的核心面积仅为140μmⅹ280μm,约为0.04mm2.在2.8V电压下,功耗为9.8mW.展开更多
基金funded by the National Natural Science Foundation of China (No.52225402)Inner Mongolia Research Institute,China University of Mining and Technology-Beijing (IMRI23003)。
文摘In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considering the coal pillar recovery rate and pipeline's safety requirements,two new shaped coal pillar design approaches for subsurface pipelines were developed.Firstly,the deformation limitations for measuring pipeline safety are categorized into two:no deformation is permitted,and deformation is acceptable within elastic limits.Subsequently,integrating the key stratum theory(KST)and cave angle,a fishbone-shaped coal pillar design approach that does not permit pipeline deformation is established.Meanwhile,combined with the ground subsidence and the pipeline's elastic deformation limit,a grille-shaped coal pillar design approach that accepts deformation pipelines within elastic limits is established.Those two new approaches clarify parameters including mined width,coal pillar width and mined length.Finally,the case study shows that the designed mined width,coal pillar width and mined length of the fishbone-shaped coal pillar are 90,80,and 130 m,while those of the grille-shaped are 320,370,and640 m.Compared with the conventional method,the fishbone-shaped and grille-shaped coal pillar design approaches recovered coal pillar resources of 2.65×10~6and 5.81×10~6t on the premise of meeting the pipeline safety requirements,and the recovery rates increased by 20.5%and 45.0%,with expenditures representing only 56.46%and 20.02%of the respective benefits.These new approaches provide managers with diverse options for protecting pipeline safety while promoting coal pillar recovery,which is conducive to the harmonic mining of gas-coal resources.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金This work was supported by the National Natural Science Foundation of China(51874332,51991363)the CNPC's Major Science and Technology Projects(ZD2019-184-003)+1 种基金the Fundamental Research Funds for Central Universities(20CX05008A)“14th Five-Year plan”forward-looking basic major science and technology project of CNPC(2021DJ4901).
文摘Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
文摘针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier,CSFRA),来替代传统运放。CSFRA通过引入CMOS开关自偏置和全差分结构,同时在非放大时序中关断电路,降低了残差放大器功耗。基于所提CSFRA,配合可降低开关功耗的检测和跳过切换方案,设计了一款12 Bit 10 MS/s的Pipelined SAR ADC。该电路基于MXIC L18B 180 nm CMOS工艺实现,实验结果表明,在10 MS/s的采样率下,该电路的SFDR和SNDR分别为75.3 dB和61.3 dB,功耗仅为944μW,其中CSFRA功耗仅为368μW。
基金supported by the Beijing Natural Science Foundation(No.1234042)the National Key Research and Development Program for Young Scientists(No.2023YFA1609900)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB37000000)the National Natural Science Foundation of China(No.12305371)。
文摘Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the reduced resolution,providing improved image details that can greatly facilitate scientific discovery.Among these methods,deconvolution techniques are straightforward,yet either require known prior information or struggle to tackle large experimental data.Deep learning(DL)-based super-resolution(SR)methods handle large data well,however data scarcity and model generalizability are problematic.In addition,current image restoration methods are mostly offline and inefficient for many beamlines where high data volumes and data complexity issues are encountered.To overcome these limitations,an online image-restoration pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising.In this study,using both deconvolution and pretrained DL-based SR models,we show that different restoration efficacies can be achieved on different types of synchrotron experimental data.We describe the necessity,feasibility,and significance of constructing such an image-restoration pipeline for future synchrotron experiments.
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51575528)the Science Foundation of China University of Petroleum,Beijing(No.2462022QEDX011).
文摘Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.
基金Supported by the National Natural Science Foundation of China (No. 50879013)China National 111 Project (No.B07019)
文摘During the operation and installation of offshore pipelines, high axial forces and pressures are experienced, and their effects cannot be neglected. In this article, the effect of internal flow velocity and functional loads on vortex-induced vibration (VIV) response is investigated. On the basis of the Hamilton principle, a differential equation was derived to describe the motion of a pinned-pinned tensioned spanning pipeline conveying fluid. The VIV response was calculated according to DNV-RP-F105 under different functional loads. The results showed that functional loads influence free spanning pipeline VIV response by changing the natural frequency. Internal flow velocity was found less important for VIV response than other functional load factors, such as effective axial force, because the speed in reality is not high enough to be significant. The research may provide a reference for sensitivity studies of the effect of functional loads on allowable free span lengths.
文摘Aim To design an ASIC based on CORDIC(coordinate rotations digital computer) to meet the requirement of coordinate conversion in high speed radar signal processing. Methods A new pipeline CORDIC architecture easily realized in VLSI was introduced. Results and Conclusion The results of hardware simulation with FPGA show that the pipeline CORDIC architecture meets the requirement.
文摘设计实现一种应用于CMOS图像传感器的10bit模数转换器(ADC),采用基于逐次逼近的新型流水线结构(Pipelined SAR ADC).提出了一种优化选取其中高精度倍增数模转换器(MDAC)和单位电容值的解析方法.通过采用第一级高精度、半增益MDAC和动态比较器等技术提高了整体电路的线性度,并降低了系统功耗.通过对版图面积的优化设计,满足了CMOS图像传感器对芯片面积的要求.本设计基于180nm CMOS工艺,仿真结果显示电路实现了60.37dB的信噪失真比(SNDR)和76.37dB的无杂散动态范围(SFDR),有效精度(ENOB)达到了9.74bit.ADC的核心面积仅为140μmⅹ280μm,约为0.04mm2.在2.8V电压下,功耗为9.8mW.