Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural proper...Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work.展开更多
A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjac...A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjacent steel structural units are jointed with fasteners, and each steel structural unit has a certain radian and is welded by two steel tubes and one piece of steel disc. In order to test and verify the reliability of the new supporting structure, the field tests are designed. The main monitoring programs include the hoop stress of supporting structure, lateral earth pressure, and soil deformation. The monitoring data of the field tests show that the new supporting structure is convenient, reliable and safe.展开更多
The jacket structure has become more popular as the offshore wind-turbine support structure. K-type and inverted-K-type jacket support structures have superior potential due to their fewer joints and lower cost of man...The jacket structure has become more popular as the offshore wind-turbine support structure. K-type and inverted-K-type jacket support structures have superior potential due to their fewer joints and lower cost of manufacture and installation. A numerical study was presented on the dynamic responses of K-type and inverted-K-type jacket support structures subjected to different kinds of dynamic load. The results show that the inverted-K-type jacket structure has higher natural frequencies than the K-type. The wave force spectrum response shows that the maximum displacement of the K-type jacket structure is larger than that of the inverted-K-type. The time-history responses under wind and wave-current load indicate that the inverted-K-type jacket structure shows smaller displacement and stress compared with the K-type, and presents different stress concentration phenomena. The dynamic responses reveal that the inverted-K-type of jacket support structure has greater stiffness and superior mechanical properties, and thus is more applicable in the offshore area with relatively deep water.展开更多
The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa...The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.展开更多
In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
基金Project(2017QNA21)supported by the Fundamental Research Funds for the Central Universities of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(20120022120003) supported by the Research Fund for the Doctoral Program of Higher Education, China+1 种基金Project(2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(2013006) supported by the Research Fund for Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China
文摘A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjacent steel structural units are jointed with fasteners, and each steel structural unit has a certain radian and is welded by two steel tubes and one piece of steel disc. In order to test and verify the reliability of the new supporting structure, the field tests are designed. The main monitoring programs include the hoop stress of supporting structure, lateral earth pressure, and soil deformation. The monitoring data of the field tests show that the new supporting structure is convenient, reliable and safe.
基金Project(51509081)supported by the National Natural Science Foundation of ChinaProject(B12032)supported by the “111 Project” of ChinaProjects(BK20150037,BK20150811)supported by the Natural Science Foundation of Jiangsu Province,China
文摘The jacket structure has become more popular as the offshore wind-turbine support structure. K-type and inverted-K-type jacket support structures have superior potential due to their fewer joints and lower cost of manufacture and installation. A numerical study was presented on the dynamic responses of K-type and inverted-K-type jacket support structures subjected to different kinds of dynamic load. The results show that the inverted-K-type jacket structure has higher natural frequencies than the K-type. The wave force spectrum response shows that the maximum displacement of the K-type jacket structure is larger than that of the inverted-K-type. The time-history responses under wind and wave-current load indicate that the inverted-K-type jacket structure shows smaller displacement and stress compared with the K-type, and presents different stress concentration phenomena. The dynamic responses reveal that the inverted-K-type of jacket support structure has greater stiffness and superior mechanical properties, and thus is more applicable in the offshore area with relatively deep water.
基金Project(51174192)supported by the National Natural Science Foundation of ChinaProject(BRA2010024)supported by "333" Training Foundation of Jiangsu Province,China+2 种基金Projects(2011QNB03,2014ZDPY21,2014QNB30)supported by the Fundamental Research Funds for the Central Universities,ChinaProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2015M581896)supported by China Postdoctoral Science Foundation
文摘The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.