Crimping is widely adopted in the production of large-diameter submerged-arc welding pipes. Traditionally, designers obtain the technical parameters for crimping from experience or by trial and error through experimen...Crimping is widely adopted in the production of large-diameter submerged-arc welding pipes. Traditionally, designers obtain the technical parameters for crimping from experience or by trial and error through experiments and the finite element(FE) method. However, it is difficult to achieve ideal crimping quality by these approaches. To resolve this issue, crimping parameter design was investigated by multi-objective optimization. Crimping was simulated using the FE code ABAQUS and the FE model was validated experimentally. A welding pipe made of X80 high-strength pipeline steel was considered as a target object and the optimization problem for its crimping was formulated as a mathematical model and crimping was optimized. A response surface method based on the radial basis function was used to construct a surrogate model; the genetic algorithm NSGA-II was adopted to search for Pareto solutions; grey relational analysis was used to determine the most satisfactory solution from the Pareto solutions. The obtained optimal design of parameters shows good agreement with the initial design and remarkably improves the crimping quality. Thus, the results provide an effective approach for improving crimping quality and reducing design times.展开更多
The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and ...The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.展开更多
基金Project(Y2012035)supported by the Natural Science Foundation of Hebei Provincial Education Department,ChinaProject(12211014)supported by the Natural Science Foundation of Hebei Provincial Technology Department,China+2 种基金Project(NJZY14006)supported by the Inner Mongolia Higher School Science and Technology Research Program,ChinaProject(2014BS0502)supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(135143)supported by the Program of Higher-level Talents Fund of Inner Mongolia University,China
文摘Crimping is widely adopted in the production of large-diameter submerged-arc welding pipes. Traditionally, designers obtain the technical parameters for crimping from experience or by trial and error through experiments and the finite element(FE) method. However, it is difficult to achieve ideal crimping quality by these approaches. To resolve this issue, crimping parameter design was investigated by multi-objective optimization. Crimping was simulated using the FE code ABAQUS and the FE model was validated experimentally. A welding pipe made of X80 high-strength pipeline steel was considered as a target object and the optimization problem for its crimping was formulated as a mathematical model and crimping was optimized. A response surface method based on the radial basis function was used to construct a surrogate model; the genetic algorithm NSGA-II was adopted to search for Pareto solutions; grey relational analysis was used to determine the most satisfactory solution from the Pareto solutions. The obtained optimal design of parameters shows good agreement with the initial design and remarkably improves the crimping quality. Thus, the results provide an effective approach for improving crimping quality and reducing design times.
文摘The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.