High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical struc...We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
文摘We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance.