Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragran...Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields.展开更多
文摘Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields.