期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks
1
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
MetaPINNs:Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
2
作者 郭亚楠 曹小群 +1 位作者 宋君强 冷洪泽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期96-107,共12页
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea... Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs. 展开更多
关键词 physics-informed neural networks gradient-enhanced loss function meta-learned optimization nonlinear science
在线阅读 下载PDF
TCAS-PINN:Physics-informed neural networks with a novel temporal causality-based adaptive sampling method
3
作者 郭嘉 王海峰 +1 位作者 古仕林 侯臣平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期344-364,共21页
Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the los... Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited. 展开更多
关键词 partial differential equation physics-informed neural networks residual-based adaptive sampling temporal causality
在线阅读 下载PDF
A hybrid physics-informed data-driven neural network for CO_(2) storage in depleted shale reservoirs 被引量:1
4
作者 Yan-Wei Wang Zhen-Xue Dai +3 位作者 Gui-Sheng Wang Li Chen Yu-Zhou Xia Yu-Hao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期286-301,共16页
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s... To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs. 展开更多
关键词 Deep learning physics-informed data-driven neural network Depleted shale reservoirs CO_(2)storage Transport mechanisms
在线阅读 下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:5
5
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 Lithium-ion batteries physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
在线阅读 下载PDF
Meshfree-based physics-informed neural networks for the unsteady Oseen equations
6
作者 彭珂依 岳靖 +1 位作者 张文 李剑 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期151-159,共9页
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatio... We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution. 展开更多
关键词 physics-informed neural networks the unsteady Oseen equation convergence small sample learning
在线阅读 下载PDF
Physics-informed deep learning for fringe pattern analysis
7
作者 Wei Yin Yuxuan Che +6 位作者 Xinsheng Li Mingyu Li Yan Hu Shijie Feng Edmund Y.Lam Qian Chen Chao Zuo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第1期4-15,共12页
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives... Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging. 展开更多
关键词 optical metrology deep learning physics-informed neural networks fringe analysis phase retrieval
在线阅读 下载PDF
基于改进物理信息神经网络的变电站建筑本体运行碳排放预测方法
8
作者 高君玺 刘刚 +1 位作者 陈庆伟 王志鹏 《建筑节能(中英文)》 2025年第4期113-119,共7页
变电站建筑碳排放量的计算是一个复杂且具有挑战性的任务,尤其是在设计阶段预测碳排放量将有助于实现碳排放量的控制。神经网络(NN)模型由于其计算速度快、预测准确性高的优点被广泛应用。然而,实际应用中往往难以收集到模型所需的高质... 变电站建筑碳排放量的计算是一个复杂且具有挑战性的任务,尤其是在设计阶段预测碳排放量将有助于实现碳排放量的控制。神经网络(NN)模型由于其计算速度快、预测准确性高的优点被广泛应用。然而,实际应用中往往难以收集到模型所需的高质量数据集,这对模型的训练难度与预测鲁棒性造成了影响。事实上,可以通过总结数据集的先验信息,并通过先验信息与神经网络相结合提高模型的训练速度与数据集范围外的预测效果。提出一种用于碳排放预测的物理信息神经网络(PINN)构建方法,将遗传规划(GP)算法嵌入PINN结构中,以获取数据集的先验物理信息,从而提高模型性能。以山东省作为分析案例区域,对比两个模型在不同数据集下的训练结果,证明了在小数据集下相较于NN模型PINN具有更快的训练速度与更好的预测稳定性。 展开更多
关键词 碳排放 物理信息约束神经网络 变电站
在线阅读 下载PDF
基于物理信息神经网络的长距离顶管施工顶力预测
9
作者 李博 刘宇翔 +2 位作者 陈建国 杨耀红 张哲 《人民长江》 北大核心 2025年第1期147-155,共9页
长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网... 长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网络的训练机制,并引入改进的麻雀搜索算法(ISSA)对模型超参数取值进行优化,建立了ISSA-PINN顶管施工顶力预测模型;以河南省郑开同城东部供水工程顶管施工为例,选取524组工程实测数据验证了模型的有效性。计算结果表明:ISSA-PINN模型具有较高的预测精度,相较于单纯数据驱动模型,在测试集和新数据集中的预测性能分别提升了0.07和0.17,说明物理模型的融入对降低机器模型的过拟合风险和提高泛化能力有积极影响;相比于SSA和粒子群算法,ISSA算法寻优速度更快、适应度更好。研究结果可为顶管工程施工顶力控制提供参考。 展开更多
关键词 顶管施工 顶力预测 物理信息神经网络(pinn) 改进麻雀搜索算法(ISSA)
在线阅读 下载PDF
基于PINN的复合材料自动铺放轨迹整体规划 被引量:2
10
作者 林静明 许可 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第5期914-923,共10页
自动纤维铺放能有效地提高复材构件的制造效率和质量。为满足复材构件的力学性能要求及铺放质量要求,在给定曲面目标域内生成铺放轨迹时需要同时考虑转弯半径、纤维角偏差以及轨迹间距等工艺指标。现有铺放轨迹规划方法大多在对基准轨... 自动纤维铺放能有效地提高复材构件的制造效率和质量。为满足复材构件的力学性能要求及铺放质量要求,在给定曲面目标域内生成铺放轨迹时需要同时考虑转弯半径、纤维角偏差以及轨迹间距等工艺指标。现有铺放轨迹规划方法大多在对基准轨迹进行优化后,通过路径密化生成铺放轨迹。这仅能保证所生成的轨迹满足单一要求,难以整体满足多个优化目标。为实现多优化目标下的复合材料自动铺放轨迹整体规划,本文将轨迹规划问题转换成为目标域内的泛函优化问题,利用内嵌物理知识神经网络(Physics-informed neural network,PINN)实现目标函数的求解,并提取目标函数的等值线作为轨迹规划的结果。相较于现有策略,本文提出的方法能整体兼顾轨迹的方向性、可铺性以及间隙质量,为实现先进复合材料自动铺放轨迹整体规划提供新思路。 展开更多
关键词 复合材料自动铺放 轨迹规划 全局度量 内嵌物理知识神经网络 曲面参数化
在线阅读 下载PDF
基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测 被引量:11
11
作者 潘秋景 吴洪涛 +1 位作者 张子龙 宋克志 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期539-551,共13页
复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘... 复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘进诱发地层变形的物理信息神经网络(physics-informed neural network,简称PINN)模型。针对隧道上覆多个地层的地质特征,提出了多域物理信息神经网络(multi-physics-informed neural network,简称MPINN)模型,实现了在统一的框架内对不同地层的物理信息分区域表达。结果表明:MPINN模型高度还原了有限差分法的计算结果,可以准确预测复合地层中隧道开挖诱发的地表沉降;由于融入了物理机制,MPINN模型对隧道施工诱发地表沉降的问题具有普适性,可应用于不同地质和几何条件下隧道诱发地表沉降的预测;基于工程实测数据,提出的MPINN模型准确预测了监测断面的地表沉降曲线,可为复合地层下盾构掘进过程中地表沉降的预测预警提供参考。 展开更多
关键词 物理信息神经网络(pinn) 盾构隧道 地表沉降 机器学习 数据物理驱动
在线阅读 下载PDF
基于PINNs的高度非线性Richards入渗模型研究
12
作者 霍海峰 黄昊宇 +2 位作者 李其昂 胡彪 张兆文 《中国民航大学学报》 CAS 2023年第5期6-12,共7页
针对具有高度非线性系数的非饱和土Richards入渗模型,利用物理信息神经网络(PINNs,physics-informed neural networks)进行求解,并通过有限差分方法对网络预测结果进行验证,发现PINNs预测结果与有限差分预测结果基本吻合;再研究超参数对... 针对具有高度非线性系数的非饱和土Richards入渗模型,利用物理信息神经网络(PINNs,physics-informed neural networks)进行求解,并通过有限差分方法对网络预测结果进行验证,发现PINNs预测结果与有限差分预测结果基本吻合;再研究超参数对PINNs误差的影响,确定训练集大小、网络层数等因素对PINNs训练集及测试集误差的影响,在合理的超参数调整下,PINNs预测模型在高度非线性入渗模型中表现出良好的训练效果。该计算方法可广泛应用于热传导、水汽迁移及应力平衡等机场工程问题求解。 展开更多
关键词 高度非线性系数 入渗模型 物理信息神经网络 有限差分方法 超参数调整
在线阅读 下载PDF
基于物理信息深度学习算法的Flame D热流场重构研究
13
作者 彭浩然 胡贵华 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期878-887,共10页
尽管数值模拟方法在求解流体动力学的湍流过程中发展迅速,但处理复杂的几何形状和流动过程时,在准确建模和计算速度等问题上仍面临挑战性。针对当前在计算流体力学(Computational Fluid Dynamics,CFD)上存在的计算代价大等问题,本文在... 尽管数值模拟方法在求解流体动力学的湍流过程中发展迅速,但处理复杂的几何形状和流动过程时,在准确建模和计算速度等问题上仍面临挑战性。针对当前在计算流体力学(Computational Fluid Dynamics,CFD)上存在的计算代价大等问题,本文在传统的湍流数值模拟技术的基础上,结合机器学习,以经典的Sandia Flame D燃烧模型为例,通过引入物理信息的深度学习算法,建立物理信息神经网络架构(Physical-Information Neural Network,PINN),将符合规律的物理信息内嵌到神经网络,使得用小样本就能实现参数的流场重构。在平面维度上,分别对PINN和数据驱动方法重构的结果,与CFD软件仿真结果进行对比分析,其中PINN方法在训练集大小不及样本点总数一半的情况下,即可得到数据驱动方法在大样本情况下的重构结果,重构出燃烧过程在t=1 s时刻的轴向、径向速度以及温度的L2相对误差分别为0.187%、1.194%,0.071%,且在训练集占样本点总数的55%、70%、82%的情况下,PINN方法均比数据驱动方法误差小。在时间维度上,成功重构t=0.3、0.5、1 s时刻的轴向速度云图,证明PINN方法能够重构出几何模型采样时间范围内任意时刻的物理场分布云图。 展开更多
关键词 计算流体力学 深度学习 物理信息神经网络 湍流燃烧 流场重构
在线阅读 下载PDF
基于物理信息神经网络的船舶螺旋桨尾流场重构 被引量:1
14
作者 侯先瑞 周星宇 黄骁骋 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第11期1654-1664,共11页
将物理信息神经网络(PINN)应用于船舶螺旋桨尾流场的重建.介绍了PINN的原理和基本框架;应用PINN求解Burgers方程,对PINN求解偏微分方程的可行性进行验证.利用计算流体力学(CFD)软件STAR CCM+对KVLCC2螺旋桨的敞水特性进行了数值模拟,得... 将物理信息神经网络(PINN)应用于船舶螺旋桨尾流场的重建.介绍了PINN的原理和基本框架;应用PINN求解Burgers方程,对PINN求解偏微分方程的可行性进行验证.利用计算流体力学(CFD)软件STAR CCM+对KVLCC2螺旋桨的敞水特性进行了数值模拟,得到了该桨在敞水中运动的流场信息.基于数值模拟得到的敞水桨流场特性信息,构造PINN训练样本集对PINN进行训练;训练后的PINN用于推断控制方程在任意时间和空间坐标的近似解.将PINN得到的速度和压力分布与STAR CCM+模拟的速度和压力分布进行了比较,对比结果验证了PINN在尾流场重建中的可靠性.研究结果表明,PINN可以应用于船舶螺旋桨尾流场的重建. 展开更多
关键词 物理信息神经网络 偏微分方程 流场信息 流场重构 螺旋桨
在线阅读 下载PDF
基于晶体塑性力学框架的材料本构行为智能预测研究
15
作者 翁焕博 罗诚 袁荒 《力学学报》 EI CAS CSCD 北大核心 2024年第12期3468-3483,共16页
人工神经网络(ANNs)已逐渐成为非线性材料多尺度本构建模的重要工具.针对航空航天领域中广泛使用的镍基单晶合金开发了基于晶体塑性框架的材料本构行为智能预测方法.提出的新方法在数据驱动的基础上结合了晶体塑性本构模型,保留了晶体... 人工神经网络(ANNs)已逐渐成为非线性材料多尺度本构建模的重要工具.针对航空航天领域中广泛使用的镍基单晶合金开发了基于晶体塑性框架的材料本构行为智能预测方法.提出的新方法在数据驱动的基础上结合了晶体塑性本构模型,保留了晶体滑移系的求解框架,将激活滑移系上的状态变量作为网络的输入,建立了状态变量和滑移系剪切应变增量的物理联系,引入了物理信息损失函数,实现了应力的隐式求解,从而准确预测了单晶材料的单调、循环力学行为.进一步地,探究了不同损失函数对模型训练结果的影响,明确指出数据和物理约束共同作用下的模型性能显著提升.物理信息的融入在一定程度上提升了模型的外插预测精度,但在训练样本稀疏区域仍然无法做到精确预测.为了解决在训练样本稀疏区域难以精确预测的问题,在常规的离线学习策略上提出了在线学习策略,使得神经网络模型根据残差大小进行自学习,最终达到传统本构模型的预测精度.提出的基于神经网络的晶体塑性本构行为预测框架为材料本构关系研究领域提供了创新且有效的思路,有望进一步推动复杂材料的多尺度本构模型研究. 展开更多
关键词 循环晶体塑性 镍基单晶合金 物理信息神经网络(pinn) 取向敏感性 在线学习机制
在线阅读 下载PDF
基于物理信息驱动神经网络的三维初至波旅行时计算方法
16
作者 都国宁 谭军 +2 位作者 宋鹏 解闯 王绍文 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期9-20,共12页
在地震勘探中,初至波旅行时的精确求取是偏移成像和旅行时反演等处理技术的重要基础。基于程函方程的有限差分算法在地震波旅行时求取中展现出良好的效果,但需要付出巨大的计算成本,尤其是对多震源、高密度网格的旅行时计算。为此,提出... 在地震勘探中,初至波旅行时的精确求取是偏移成像和旅行时反演等处理技术的重要基础。基于程函方程的有限差分算法在地震波旅行时求取中展现出良好的效果,但需要付出巨大的计算成本,尤其是对多震源、高密度网格的旅行时计算。为此,提出了一种基于物理信息驱动神经网络(PINN)的三维程函方程旅行时求取算法,由三维程函方程及其物理条件信息构成损失函数,再通过最小化该损失函数训练神经网络,最终输出满足程函方程的旅行时结果。不同速度模型的数值模拟实验结果表明,所提方法相对于传统算法具有更高的计算效率和更高的精确度。 展开更多
关键词 旅行时 程函方程 物理信息驱动神经网络(pinn) 深度学习 有限差分
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部