期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
1
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers Feature selection
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
2
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
Design and implementation of data-driven predictive cloud control system 被引量:3
3
作者 GAO Runze XIA Yuanqing +2 位作者 DAI Li SUN Zhongqi ZHAN Yufeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1258-1268,共11页
The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution... The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution to handle complex large-scale control missions by using sufficient computing resources.However,the computing ability enables more complex devices and more data to be involved and most of the data have not been fully utilized.Meanwhile,it is even impossible to obtain an accurate model of each device in the complex control systems for the model-based control algorithms.Therefore,motivated by the above reasons,we propose a data-driven predictive cloud control system.To achieve the proposed system,a practical data-driven predictive cloud control testbed is established and together a cloud-edge communication scheme is developed.Finally,the simulations and experiments demonstrate the effectiveness of the proposed system. 展开更多
关键词 cloud control system data-driven predictive control networked control system cloud computing
在线阅读 下载PDF
Data-driven fault diagnosis method for analog circuits based on robust competitive agglomeration 被引量:1
4
作者 Rongling Lang Zheping Xu Fei Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期706-712,共7页
The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the ... The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits. 展开更多
关键词 data-driven fault diagnosis analog circuit robust competitive agglomeration (RCA).
在线阅读 下载PDF
Data-driven nonlinear control of a solid oxide fuel cell system 被引量:2
5
作者 李益国 沈炯 +2 位作者 K.Y.Lee 刘西陲 费文哲 《Journal of Central South University》 SCIE EI CAS 2012年第7期1892-1901,共10页
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat... Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region. 展开更多
关键词 solid oxide fuel cell (SOFC) data-driven method virtual reference feedback tuning (VRFT) support vector machine(SVM) ANTI-WINDUP
在线阅读 下载PDF
Nonlinear direct data-driven control for UAV formation flight system 被引量:1
6
作者 WANG Jianhong Ricardo A.RAMIREZ-MENDOZA XU Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1409-1418,共10页
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,cons... This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering,i.e.,unmanned aerial vehicle(UAV)formation flight system.Firstly,from the theoretical point of view,consider one nonlinear closedloop system with a nonlinear plant and nonlinear feed-forward controller simultaneously.To avoid the complex identification process for that nonlinear plant,a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly,whose detailed explicit forms are model inverse method and approximated analysis method.Secondly,from the practical point of view,after reviewing the UAV formation flight system,nonlinear direct data-driven control is applied in designing the formation controller,so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem.Since most natural phenomena have nonlinear properties,the direct method must be the better one.Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems,and the direct nonlinear controller design is the purpose of this paper. 展开更多
关键词 nonlinear system nonlinear direct data-driven control model inverse control unmanned aerial vehicle(UAV)formation flight.
在线阅读 下载PDF
Reinforcement learning-based scheduling of multi-battery energy storage system 被引量:1
7
作者 CHENG Guangran DONG Lu +1 位作者 YUAN Xin SUN Changyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期117-128,共12页
In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov ... In this paper, a reinforcement learning-based multibattery energy storage system(MBESS) scheduling policy is proposed to minimize the consumers ’ electricity cost. The MBESS scheduling problem is modeled as a Markov decision process(MDP) with unknown transition probability. However, the optimal value function is time-dependent and difficult to obtain because of the periodicity of the electricity price and residential load. Therefore, a series of time-independent action-value functions are proposed to describe every period of a day. To approximate every action-value function, a corresponding critic network is established, which is cascaded with other critic networks according to the time sequence. Then, the continuous management strategy is obtained from the related action network. Moreover, a two-stage learning protocol including offline and online learning stages is provided for detailed implementation in real-time battery management. Numerical experimental examples are given to demonstrate the effectiveness of the developed algorithm. 展开更多
关键词 multi-battery energy storage system(MBESS) reinforcement learning periodic value iteration data-driven
在线阅读 下载PDF
Fast garment simulation with aid of hybrid bones
8
作者 吴博 陈寅 +2 位作者 徐凯 程志全 熊岳山 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2218-2226,共9页
A data-driven method was proposed to realistically animate garments on human poses in reduced space. Firstly, a gradient based method was extended to generate motion sequences and garments were simulated on the sequen... A data-driven method was proposed to realistically animate garments on human poses in reduced space. Firstly, a gradient based method was extended to generate motion sequences and garments were simulated on the sequences as our training data. Based on the examples, the proposed method can fast output realistic garments on new poses. Our framework can be mainly divided into offline phase and online phase. During the offline phase, based on linear blend skinning(LBS), rigid bones and flex bones were estimated for human bodies and garments, respectively. Then, rigid bone weight maps on garment vertices were learned from examples. In the online phase, new human poses were treated as input to estimate rigid bone transformations. Then, both rigid bones and flex bones were used to drive garments to fit the new poses. Finally, a novel formulation was also proposed to efficiently deal with garment-body penetration. Experiments manifest that our method is fast and accurate. The intersection artifacts are fast removed and final garment results are quite realistic. 展开更多
关键词 data-driven linear blend skinning hybrid bones INTERACTIVE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部