The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a ...The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine.展开更多
Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H_(2) production and biomass valorization with infinite solar energy.However,harsh reaction conditions(high alkalinit...Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H_(2) production and biomass valorization with infinite solar energy.However,harsh reaction conditions(high alkalinity or toxic organic solvents),with low biomass conversion and selectivity are often reported in literature.In this work,we report glucose photoreforming for coproduction of H_(2) and arabinose with improved selectivity under neutral condition using carbon quantum dots(CQDs)modified TiO_(2) composites.We show that the conventional CQDs fabricated by a facile one-step hydrothermal process could be endowed with novel color changing property,due to the particle aggregation under the regulation of incident light.The as-fabricated CQDs/TiO_(2) composites with certain colored CQDs could greatly improve glucose to arabinose conversion selectivity(-75%)together with efficient hydrogen evolution(up to 2.43 mmolh^(-1)g^(-1))in water.The arabinose is produced via the direct C1-C2 α-scissions mechanism with reactive oxygen species of·O_(2)^(-) and·OH,as evidenced by ^(13)C labeled glucose and the electron spin-resonance(ESR)studies,respectively.This work not only sheds new lights on CQDs assisted photobiorefinery for biomass valorization and H_(2) coproduction,but also opens the door for rationale design of different colored CQDs and their potential applications for solar energy utilization in the noble-metal-free system.展开更多
Biomass photorefinery to produce fuels and valuable chemicals is a promising approach to alleviating the energy crisis and achieving carbon neutrality.However,precisely modulating the photocatalytic conversion of biom...Biomass photorefinery to produce fuels and valuable chemicals is a promising approach to alleviating the energy crisis and achieving carbon neutrality.However,precisely modulating the photocatalytic conversion of biomass into value-added chemicals is still challenging.Here we demonstrate a feasible strategy to selectively produce arabinose via oriented glucose oxidation to gluconic acid,followed by the decarboxylation process for C1-C2 bond cleavage.To realize this process,gold nanoparticles(Au NPs)modified carbon nitride(AuCN)is rationally designed to regulate the electron transfer behavior of pristine carbon nitride from a two-electron pathway to a single-electron pathway.This allows selective production of superoxide(·O_(2)^(-))from oxygen reduction reaction which triggers glucose oxidation into gluconic acid.In addition,the arabinose production is synergistically promoted by the improved charge separation efficiency and extended visible-light absorption via localized surface plasmon resonance(LSPR)of Au nanoparticles.This work demonstrates an example of a mechanism-guided catalyst design to improve biofuels/chemicals production from biomass photorefinery.展开更多
基金supported by the National Natural Science Foundation of China(No.32071713)the Outstanding Youth Foundation Project of Heilongjiang Province of China(JQ2019C001)。
文摘The global commitment to pivoting to sustainable energy and products calls for technology development to utilize solar energy for hydrogen(H_(2))and value-added chemicals production by biomass photoreforming.Herein,a novel dual-functional marigold-like Zn_(x)Cd_(1-x)S homojunction has been the production of lactic acid with high-yield and H_(2)with high-efficiency by selective glucose photoreforming.The optimized Zn_(0.3)Cd_(0.7)S exhibits outstanding H_(2)generation(13.64 mmol h^(-1)g^(-1)),glucose conversion(96.40%),and lactic acid yield(76.80%),over 272.80 and 19.21 times higher than that of bare ZnS(0.05 mmol h^(-1)g^(-1))and CdS(0.71 mmol h^(-1)g^(-1))in H_(2)generation,respectively.The marigold-like morphology provides abundant active sites and sufficient substrates accessibility for the photocatalyst,while the specific role of the homojunction formed by hexagonal wurtzite(WZ)and cubic zinc blende(ZB)in photoreforming biomass has been demonstrated by density functional theory(DFT)calculations.Glucose is converted to lactic acid on the WZ surface of Zn_(0.3)Cd_(0.7)S via the photoactive species·O_(2)^(-),while the H_(2)is evolved from protons(H^(+))in H_(2)O on the ZB surface of Zn_(0.3)Cd_(0.7)S.This work paves a promising road for the production of sustainable energy and products by integrating photocatalysis and biorefine.
基金supported by the Canada First Research Excellence Fund (CFREF)National Key R&D Program of China (2016YFA0202602).
文摘Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H_(2) production and biomass valorization with infinite solar energy.However,harsh reaction conditions(high alkalinity or toxic organic solvents),with low biomass conversion and selectivity are often reported in literature.In this work,we report glucose photoreforming for coproduction of H_(2) and arabinose with improved selectivity under neutral condition using carbon quantum dots(CQDs)modified TiO_(2) composites.We show that the conventional CQDs fabricated by a facile one-step hydrothermal process could be endowed with novel color changing property,due to the particle aggregation under the regulation of incident light.The as-fabricated CQDs/TiO_(2) composites with certain colored CQDs could greatly improve glucose to arabinose conversion selectivity(-75%)together with efficient hydrogen evolution(up to 2.43 mmolh^(-1)g^(-1))in water.The arabinose is produced via the direct C1-C2 α-scissions mechanism with reactive oxygen species of·O_(2)^(-) and·OH,as evidenced by ^(13)C labeled glucose and the electron spin-resonance(ESR)studies,respectively.This work not only sheds new lights on CQDs assisted photobiorefinery for biomass valorization and H_(2) coproduction,but also opens the door for rationale design of different colored CQDs and their potential applications for solar energy utilization in the noble-metal-free system.
基金supported by the Canada First Research Excellence Fund(CFREF)。
文摘Biomass photorefinery to produce fuels and valuable chemicals is a promising approach to alleviating the energy crisis and achieving carbon neutrality.However,precisely modulating the photocatalytic conversion of biomass into value-added chemicals is still challenging.Here we demonstrate a feasible strategy to selectively produce arabinose via oriented glucose oxidation to gluconic acid,followed by the decarboxylation process for C1-C2 bond cleavage.To realize this process,gold nanoparticles(Au NPs)modified carbon nitride(AuCN)is rationally designed to regulate the electron transfer behavior of pristine carbon nitride from a two-electron pathway to a single-electron pathway.This allows selective production of superoxide(·O_(2)^(-))from oxygen reduction reaction which triggers glucose oxidation into gluconic acid.In addition,the arabinose production is synergistically promoted by the improved charge separation efficiency and extended visible-light absorption via localized surface plasmon resonance(LSPR)of Au nanoparticles.This work demonstrates an example of a mechanism-guided catalyst design to improve biofuels/chemicals production from biomass photorefinery.