期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Photocatalytic reduction of carbon dioxide to methanol by Cu_2O/SiC nanocrystallite under visible light irradiation 被引量:8
1
作者 Huiling Li Yonggen Lei +4 位作者 Ying Huang Yueping Fang Yuehua Xu Li Zhu Xin Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期145-150,共6页
The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results in... The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results indicated that besides a small quantity of 6H-SiC, SiC NPs mainly consisted of 3C-SiC. The band gaps of SiC and Cu2O were estimated to be about 1.95 and 2.23 eV from UV-Vis spectra, respectively. The Cu2O modification can enhance the photocatalytic performance of SiC NPs, and the largest yields of methanol on SiC, Cu2O and Cu2O/SiC photocatalysts under visible light irradiation were 153, 104 and 191μmol/g, respectively. 展开更多
关键词 photocatalytic reduction carbon dioxide heterogeneous catalysts SIC CU2O NANOPARTICLES
在线阅读 下载PDF
One-step synthesis of defected Bi_(2)Al_(4)O_(9)/β-Bi_(2)O_(3) heterojunctions for photocatalytic reduction of CO_(2) to CO 被引量:5
2
作者 Ying Liu Jian-guo Guo +3 位作者 Yue Wang Ying juan Hao Rui-hong Liu Fa-tang Li 《Green Energy & Environment》 SCIE CSCD 2021年第2期244-252,共9页
Defect and charge transfer efficiency of nano-photocatalysts are important factors which influence their photocatalytic performance.In this work,oxygen vacancies are successfully introduced in the synthesis process of... Defect and charge transfer efficiency of nano-photocatalysts are important factors which influence their photocatalytic performance.In this work,oxygen vacancies are successfully introduced in the synthesis process of Bi_(2)Al_(4)O_(9)/β-Bi_(2)O_(3)heterojunctions through one-step in situ selfcombustion method.High-resolution transmission electron microscopy (HRTEM),UV-Vis diffuse reflectance spectra (UV-Vis DRS),and electron spin resonance (ESR) measurements confirm the existence of oxygen vacancies.In addition,by controlling the ratio of reactants of Bi(NO_(3))_(3)to Al(NO_(3))_(3),the ratio of Bi_(2)Al_(4)O_(9)and β-Bi_(2)O_(3)in the heterojunction can be easily adjusted.Photocurrent responses and surface photovoltage spectroscopy (SPV) indicate that the construction of the Bi_(2)Al_(4)O_(9)/β-Bi_(2)O_(3)heterostructure improves the separation efficiency of the photo-generated electrons and holes.CO_(2)-TPD results imply that the amounts and stability of heterojunctions are enhanced compared with their counterparts.The Bi_(2)Al_(4)O_(9)/β-Bi_(2)O_(3)heterojunction with 14 mol%Bi_(2)Al_(4)O_(9)shows the highest photocatalytic ability for reduction of CO_(2)into CO.The enhanced photoreduction of CO_(2)performance can be ascribed to the synergistic effects of the heterojunction for electron separation and oxygen vacancies for CO_(2)activation. 展开更多
关键词 Bi_(2)Al_(4)O_(9) β-Bi_(2)O_(3) Heterojunction Defect photocatalytic reduction of CO_(2)
在线阅读 下载PDF
Room-temperature solid phase surface engineering of BiOI sheets stacking g-C_(3)N_(4) boosts photocatalytic reduction of Cr(Ⅵ) 被引量:4
3
作者 Xin Zhang Weiwei Yang +3 位作者 Manyi Gao Hu Liu Kefei Li Yongsheng Yu 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期66-74,共9页
Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown Bi... Cr(Ⅵ)-based compounds pollution have attracted global concern due to serious harm to humans and environment.Hence,it is crucial to exploit an effective technique to eliminate Cr(Ⅵ)in water.Herein,we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C_(3)N_(4)(BCN)direct Z-scheme heterojunction by solid phase engineering method at room temperature.Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure,and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98%yield for 2.5 h and reduction of Cr(Ⅵ)with more than 99%yield for 1.5 h at pH=2.Stability test shows BCN-3 still kept more than 98%reduction efficiency after 6 cycles.In addition,we also studied the reduction mechanism that shown the.O_(2)^(-)radicals essentially helped to reduce the Cr(Ⅵ)in aqueous solution under illumination,verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy(XPS)and the free radical trapping experiment.The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(Ⅵ)to Cr(Ⅲ). 展开更多
关键词 BiOI/g-C_(3)N_(4) photocatalytic reduction Solid phase Direct Z-scheme Cr(Ⅵ)reduction
在线阅读 下载PDF
The photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)for stable photocatalytic CO_(2)reduction 被引量:1
4
作者 Yaqing Zhi Haoning Mao +5 位作者 Guangxing Yang Qiao Zhang Zhiting Liu Yonghai Cao Siyuan Yang Feng Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期104-112,共9页
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)... Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future. 展开更多
关键词 CO_(2)photocatalytic reduction PHOTOCATALYSIS Basic copper carbonate SELF-RECONSTRUCTION PHOTOCATALYST
在线阅读 下载PDF
Regulating^(*)COOH intermediate via amino alkylation engineering for exceptionally effective photocatalytic CO_(2) reduction 被引量:1
5
作者 Chengcheng Chen Qiaoyu Zhang +3 位作者 Fangting Liu Zhengguo Zhang Qiong Liu Xiaoming Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期282-291,共10页
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ... Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%. 展开更多
关键词 Polymeric carbonnitride Regulate intermediate photocatalytic CO_(2)reduction Amino alkylation ^(*)COOH adsorption
在线阅读 下载PDF
Modified TiO_(2)/In_(2)O_(3) heterojunction with efficient charge separation for visible-light-driven photocatalytic CO_(2) reduction to C_(2) product
6
作者 Mengfang Liang Xiaodong Shao +8 位作者 Ji Yoon Choi Young Dok Kim Trang Thu Tran Jeongyong Kim Yosep Hwang Min Gyu Kim Yunhee Cho Sophia Akhtar Hyoyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期714-720,共7页
Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ... Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts. 展开更多
关键词 HETEROJUNCTION Oxygen vacancy photocatalytic CO_(2)reduction C_(2)product Charge separation
在线阅读 下载PDF
A novel metal-free porous covalent organic polymer for efficient room-temperature photocatalytic CO_(2) reduction via dry-reforming of methane
7
作者 Sheng-Yan Yin Ziyi Li +2 位作者 Yingcai Hu Xiao Luo Jishan Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1407-1418,共12页
At room temperature,the conversion of greenhouse gases into valuable chemicals using metal-free catalysts for dry reforming of methane(DRM) is quite promising and challenging.Herein,we developed a novel covalent organ... At room temperature,the conversion of greenhouse gases into valuable chemicals using metal-free catalysts for dry reforming of methane(DRM) is quite promising and challenging.Herein,we developed a novel covalent organic porous polymer (TPE-COP) with rapid charge separation of the electron–hole pairs for DRM driven by visible light at room temperature,which can efficiently generate syngas (CO and H_(2)).Both electron donor (tris(4-aminophenyl)amine,TAPA) and acceptor (4,4',4'',4'''-((1 E,1'E,1''E,1'''E)-(ethene-1,1,2,2-tetrayltetrakis (benzene-4,1-diyl))tetrakis (ethene-2,1-diyl))tetrakis (1-(4-formylbenzyl)quinolin-1-ium),TPE-CHO) were existed in TPE-COP,in which the push–pull effect between them promoted the separation of photogenerated electron–hole,thus greatly improving the photocatalytic activity.Density functional theory (DFT) simulation results show that TPE-COP can form charge-separating species under light irradiation,leading to electrons accumulation in TPE-CHO unit and holes in TAPA,and thus efficiently initiating DRM.After 20 h illumination,the photocatalytic results show that the yields reach 1123.6 and 30.8μmol g^(-1)for CO and H_(2),respectively,which are significantly higher than those of TPE-CHO small molecules.This excellent result is mainly due to the increase of specific surface area,the enhancement of light absorption capacity,and the improvement of photoelectron-generating efficiency after the formation of COP.Overall,this work contributes to understanding the advantages of COP materials for photocatalysis and fundamentally pushes metal-free catalysts into the door of DRM field. 展开更多
关键词 METAL-FREE photocatalytic CO_(2)reduction Covalent organic polymer Dry-reforming of methane Electron donor and acceptor
在线阅读 下载PDF
Effects of surface chlorine atoms on charge distribution and reaction barriers for photocatalytic CO_(2)reduction
8
作者 Wendong Zhang Wenjun Ma +6 位作者 Yuerui Ma Peng Chen Qingqing Ye Yi Wang Zhongwei Jiang Yingqing Ou Fan Dong 《Nano Materials Science》 EI CAS CSCD 2024年第2期235-243,共9页
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st... Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst. 展开更多
关键词 Surface chlorine atoms Charge distribution Reaction barriers photocatalytic CO_(2)reduction Bi_(2)WO_(6)
在线阅读 下载PDF
Visible-light deposition of CrO_(x) cocatalyst on TiO_(2):Cr valence regulation for superior photocatalytic CO_(2)reduction to CH_(4) 被引量:2
9
作者 Jingjing Dong Yuan Kong +7 位作者 Heng Cao Zhiyu Wang Zhirong Zhang Lidong Zhang Song Sun Chen Gao Xiaodi Zhu Jun Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期103-112,I0004,共11页
Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a... Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a lower-energy irradiation powered deposition strategy for implanting CrO_(x) cocatalyst on TiO_(2).Excitingly,CrO_(x)-400 implanted under visible-light irradiation significantly promotes the CH4 evolution rate on TiO_(2)to 8.4μmolg·^(-1)h^(-1) with selectivity of98%from photocatalytic CO_(2)reduction,which is 15 times of that on CrO_(x)-200 implanted under UV-visible-light irradiation.Moreover,CrO_(x)-400 is identified to be composed of higher valence Cr species compared to CrO_(x)-200.This valence states regulation of Cr species is indicated to provide more active sites for CO_(2) adsorption/activation and to modulate the reaction mechanism from single Cr site to Cr-Cr dual sites,thus endowing the superior CH_(4)production.This work demonstrates an alternative strategy for constructing efficient metal oxides cocatalysts on wide bandgap semiconductor. 展开更多
关键词 Valence states regulation CrO_(x)cocatalyst Lower-energy irradiation photocatalytic CO_(2)reduction High CH_(4)selectivity
在线阅读 下载PDF
Development strategies and improved photocatalytic CO_(2) reduction performance of metal halide perovskite nanocrystals 被引量:1
10
作者 Xianwei Fu Tingting Ren +3 位作者 Shilong Jiao Zhihong Tian Jianjun Yang Qiuye Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期397-422,I0011,共27页
In recent years,photocatalytic CO_(2)reduction reaction(CRR) has attracted much scientific attention to overcome energy and environmental issues by converting CO_(2)into high-value-added chemicals utilizing solar ener... In recent years,photocatalytic CO_(2)reduction reaction(CRR) has attracted much scientific attention to overcome energy and environmental issues by converting CO_(2)into high-value-added chemicals utilizing solar energy.Metal halide perovskite(MHP) nanocrystals(NCs) are recognized as an ideal choice for CRR owing to their outstanding optoelectronic properties.Although great efforts have been devoted to designing more effective photocatalysts to optimize CRR performance,severe charge recombination,instability,and unsatisfactory activity have become major bottlenecks in developing perovskite-based photocatalysts.In this review,we mainly focus on the recent research progress in the areas of relevance.First,a brief insight into reaction mechanisms for CRR and structural features of MHPs are introduced.Second,efficient modification approaches for the improvement of the photocatalytic activity and stability of the perovskite-based catalysts are comprehensively reviewed.Third,the state-of-the-art achievements of perovskite-based photocatalysts for CRR are systematically summarized and discussed,which are focused on the modification approaches,structure design,and the mechanism of the CO_(2)reduction process.Lastly,the current challenges and future research perspectives in the design and application of perovskite materials are highlighted from our point of view to provide helpful insights for seeking breakthroughs in the field of CRR.This review may provide a guide for scientists interested in applying perovskite-based catalysts for solar-to-chemical energy conversion. 展开更多
关键词 photocatalytic CO_(2)reduction MHP nanocrystals Structure design Properties Stability
在线阅读 下载PDF
Cu-Based Materials for Enhanced C_(2+) Product Selectivity in Photo-/Electro-Catalytic CO_(2) Reduction: Challenges and Prospects 被引量:2
11
作者 Baker Rhimi Min Zhou +2 位作者 Zaoxue Yan Xiaoyan Cai Zhifeng Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期25-66,共42页
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca... Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future. 展开更多
关键词 photocatalytic CO_(2)reduction Cu-based materials Electrocatalytic CO_(2)reduction
在线阅读 下载PDF
Photoreduction of CO_2 to methanol over Bi_2S_3/CdS photocatalyst under visible light irradiation 被引量:12
12
作者 Xin Li Juntao Chen +4 位作者 Huiling Li Jingtian Li Yitao Xu Yingju Liu Jiarong Zhou 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期413-417,共5页
The Bi2S3,CdS and Bi2S3/CdS photocatalysts were prepared by direct reactions between their corresponding salt and thiourea in a hy- drothermal autoclave.The photocatalytic activities of these photocatalysts for reduci... The Bi2S3,CdS and Bi2S3/CdS photocatalysts were prepared by direct reactions between their corresponding salt and thiourea in a hy- drothermal autoclave.The photocatalytic activities of these photocatalysts for reducing CO2 to CH3OH under visible light irradiation have been investigated.The results show that the photocatalytic activity and visible light response of Bi2S3 are higher than those of CdS.The Bi2S3 modification can enhance the photocatalytic activity and visible light response of CdS.The photocatalytic activity of Bi2S3/CdS hetero-junction photocatalyst was the highest and the highest yields of methanol was 613μmol/g when the weight proportion of Bi2S3 to CdS was 15%,which was about three times as large as that of CdS or two times of that of Bi2S3. 展开更多
关键词 photocatalytic reduction carbon dioxide heterogeneous catalysts CDS BI2S3 CO2 reduction
在线阅读 下载PDF
Evaluation of the plasmonic effect of Au and Ag on Ti-based photocatalysts in the reduction of CO2 to CH4 被引量:2
13
作者 Martin Dilla Anna Pougin Jennifer Strunk 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期277-283,共7页
Crystalline TiO(P25) and isolated titanate species in a ZSM-5 structure(TS-1) were modified with Au and Ag, respectively, and tested in the gas-phase photocatalytic COreduction under high purity conditions. The no... Crystalline TiO(P25) and isolated titanate species in a ZSM-5 structure(TS-1) were modified with Au and Ag, respectively, and tested in the gas-phase photocatalytic COreduction under high purity conditions. The noble metal modification was performed by photodeposition. Light absorbance properties of the catalysts are examined with UV–Vis spectroscopy before and after the activity test. In the gas-phase photocatalytic COreduction, it was observed that the catalysts with Ag nanostructures are more active than those with Au nanostructures. It is thus found that the energetic difference between the band gap energy of the semiconductor and the position of the plasmon is influencing the photocatalytic activity.Potentially, plasmon excitation due to visible light absorption results in plasmon resonance energy, which affects the excitation of the semiconductor positively. Therefore, an overlap between band gap energy of the semiconductor and metal plasmon is needed. 展开更多
关键词 photocatalytic CO2 reduction Plasmon resonance Methane formation TS-1 P25 Noble metal photodeposition High-purity gas-phase photoreactor
在线阅读 下载PDF
Nanocomposites of graphene-CdS as photoactive and reusable catalysts for visible-light-induced selective reduction process 被引量:1
14
作者 Siqi Liu Min-Quan Yang +1 位作者 Nan Zhang Yi-Jun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期145-155,共11页
Graphene (GR)-CdS nanocomposites with different weight addition ratios of GR have been assembled by a facile solvothermal treatment. The GR-CdS nanocomposite photocatalyst with an appropriate ratio of GR exhibits en... Graphene (GR)-CdS nanocomposites with different weight addition ratios of GR have been assembled by a facile solvothermal treatment. The GR-CdS nanocomposite photocatalyst with an appropriate ratio of GR exhibits enhanced photoactivity for selective reduction of aromatic nitro compounds to the corresponding aromatic amines in water under visible light irradiation as compared with blank-CdS. The characterization of GR-CdS nanocomposite photocatalysts by a collection of techniques discloses that: i) GR can tune the microscopic morphology of CdS nanoparticles and improve light absorption intensity in the visible light region; ii) GR scaffolds act as an electron reservoir to trap and shuttle the electrons photogenerated from CdS semiconductor under the visible light illumination; iii) the introduction of GR enhances the adsorption capacity of GR-CdS nanocomposites toward the substrates, aromatic nitro compounds. The synergistic effect of these factors should account for the photoactivity advancement of GR-CdS nanocomposites toward the probe reactions. Furthermore, because the photogenerated holes in the system are trapped by the quenching agent ammonium oxalate, the as-obtained GR-CdS photocataiyst is stable during the photocatalytic reduction reactions. A reasonable model has also been proposed to illustrate the reaction mechanism. 展开更多
关键词 graphene CDS photocatalytic selective reduction nitro compounds visible light water
在线阅读 下载PDF
Self-template-oriented synthesis of lead-free perovskite Cs_(3)Bi_(2)I_(9) nanosheets for boosting photocatalysis of CO_(2) reduction over Z-scheme heterojunction Cs_(3)Bi_(2)I_(9)/CeO_(2) 被引量:2
15
作者 You-Xiang Feng Guang-Xing Dong +4 位作者 Ke Su Zhao-Lei Liu Wen Zhang Min Zhang Tong-Bu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期348-355,I0010,共9页
Lead halide perovskite (LHP) nanocrystals have been intensely studied as photocatalysts for artificial photosynthesis in recent years.However,the toxicity of lead in LHP seriously limits their potential for widespread... Lead halide perovskite (LHP) nanocrystals have been intensely studied as photocatalysts for artificial photosynthesis in recent years.However,the toxicity of lead in LHP seriously limits their potential for widespread applications.Herein,we first present the synthesis of 2D lead-free halide perovskite (Cs_(3)Bi_(2)I_(9)) nanosheets with self-template-oriented method,in which BiOI/Bi_(2)O_(2) nanosheets were used as the template and Bi ion source simultaneously.Through facile electrostatic self-assembly strategy,a Z-scheme heterojunction composed of Cs_(3)Bi_(2)I_(9)nanosheets and CeO_(2) nanosheets (Cs_(3)Bi_(2)I_(9)/CeO_(2)-3:1) was constructed as photocatalyst for the photo-reduction of CO_(2) coupled with the oxidation of H_(2)O.Due to the matching energy levels and the close interfacial contact between Cs_(3)Bi_(2)I_(9)and CeO_(2) nanosheets,the separation efficiency of the photogenerated carriers in Cs_(3)Bi_(2)I_(9)/CeO_(2)-3:1 composite was significantly improved.Consequently,the environment-friendly halide perovskite heterojunction Cs_(3)Bi_(2)I_(9)/CeO_(2)-3:1presents impressive photocatalytic activity for the reduction of CO_(2)to CH_(4)and CO with an electron consumption yield of 877.04μmol g^(-1),which is over 7 and 15 times higher than those of pristine Cs_(3)Bi_(2)I_(9)and CeO_(2)nanosheets,exceeding the yield of other reported bismuth-based perovskite for photocatalytic CO_(2)reduction. 展开更多
关键词 Lead-free perovskite Z-scheme heterojunction Cs_(3)Bi_(2)I_(9)nanosheets photocatalytic CO_(2)reduction H_(2)O oxidation
在线阅读 下载PDF
Regulation of excitation energy transfer in Sb-alloyed Cs_(4)MnBi_(2)Cl_(12) perovskites for efficient CO_(2) photoreduction to CO and water oxidation toward H_(2)O_(2)
16
作者 Haiwen Wei Zhen Li +7 位作者 Honglei Wang Yang Yang Pengfei Cheng Peigeng Han Ruiling Zhang Feng Liu Panwang Zhou Keli Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期18-24,I0001,共8页
Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,... Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,issues of the poor charge transfer still remain one of the main obstacles limiting their performance due to the overwhelming radiative and nonradiative charge-carrier recombination losses.Herein,Pb-free Sb-alloyed all-inorganic quadruple perovskite Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12)(0≤x≤1)is synthesized as efficient photocatalyst.By Sb alloying,the undesired relaxation of photogenerated electrons from conduction band to emission centers of[MnCl6]^(4-)is greatly suppressed,resulting in a weakened PL emission and enhanced charge transfer for photocatalyst.The ensuing Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12) photocatalyst accomplishes efficient conversion of CO_(2)into CO,accompanied by a surprising production of H_(2)O_(2),a high valueadded product associated with water oxidation.By optimizing Sb^(3+) concentration,a high CO evolution rate of 35.1μmol g^(-1)h^(-1)is achieved,superior to most other Pb and Pb-free halide perovskites.Our findings provide new insights into the mixed-cation alloying strategies for improved photocatalytic performance of Pb-free perovskites and shed light on the rational design of robust band structure toward efficient energy transfer. 展开更多
关键词 Pb-free perovskites Energy band modulation Perovskite photocatalysis photocatalytic CO_(2)reduction Water oxidation to H_(2)O_(2)
在线阅读 下载PDF
10BaF_2:NaF,Na_3AlF_6/TiO_2 composite as a novel visible-light-driven photocatalyst based on upconversion emission 被引量:1
17
作者 刘恩周 樊君 +2 位作者 胡晓云 侯文倩 代宏哲 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期249-256,共8页
A rare-earth free upconversion luminescent material, 10BaF2:NaF, Na3AIF6, is synthesized by a hydrothermal method. The study of fluorescent spectrum indicates that it can convert visible light (550 nm-610 nm) into ... A rare-earth free upconversion luminescent material, 10BaF2:NaF, Na3AIF6, is synthesized by a hydrothermal method. The study of fluorescent spectrum indicates that it can convert visible light (550 nm-610 nm) into ultraviolet light (290 nm 350 nm), and two emission peaks at 304 nm and 324 nm are observed under the excitation of 583 nm at room temperature. Subsequently, 10BaF2:NaF, Na3AIF6/TiO2 composite photocatalyst is prepared and its catalytic activity is evaluated by the photocatalytic reduction of CO2 under visible light irradiation (λ〉 515 nm). The results show that 10BaF2:NaF, Na3AIF6/TiO2 is a more effective photocatalyst for CO2 reduction than pure TiO2, their corresponding methanol yields are 179 and 0 μmol/g-cat under the same conditions. Additionally, the mechanism of photocatalytic reduction of CO2 on 10BaF2:NaF, Na3AIF6/TiO2 is proposed. 展开更多
关键词 rare-earth free upconversion luminescent material ultraviolet emission titanium dioxide photocatalytic reduction of CO2
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部