CdS quantum dots sensitized platelike WO_3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition(CBD) technique.To further improve the stability of the p...CdS quantum dots sensitized platelike WO_3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition(CBD) technique.To further improve the stability of the photoelectrodes in alkaline environment,the platelike WO_3 films were treated with TiCl_4 to form a nano-TiO_2 buffer layer on the WO_3 plate surface before loading CdSQDs.The resulting electrodes were characterized by using XRD,SEM,HR-TEM and UV-vis spectrum.The photocatalytic activity of the resulting electrodes was investigated by degradation of methyl orange(MO) in aqueous solution.The photoelectrochemical(PEC) property of the resulting electrodes was also characterized by the linear sweep voltammetry.The results of both the degradation of MO and photocurrent tests indicated that the as-prepared CdSQDs sensitized WO_3 platelike photoelectrodes exhibit a significant improvement in photocatalytic degradation and PEC activity under visible light irradiation,compared with unsupported CdSQDs electrodes.Significantly,coating the WO_3 plates with nano-TiO_2 obviously facilitate the charge separation and retards the charge-pair recombination,and results in a highest activity for QDsCdS/TiO_2/WO_3 photoelectrodes.展开更多
The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflecta...The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2 ) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2 , which indicates the significance of O2 . The addition of NaN 3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.展开更多
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
The hierarchical BiOCl_(x)Br_(1–x)was synthesized by a simple solvothermal method.The samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-visible diffuse reflect...The hierarchical BiOCl_(x)Br_(1–x)was synthesized by a simple solvothermal method.The samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-visible diffuse reflectance spectroscopy(UV-vis DRS)and Brunauer-Emmett-Teller adsorption method.Compared to pure BiOCl or BiOBr,the BiOCl_(x)Br_(1–x)solid solution has enhanced photocatalytic degradation activity for rhodamine B.This phenomenon can be explained to the hierarchical structure,lager specific surface area and appropriate energy gap of the obtained BiOCl_(x)Br_(1–x)solid solution.The renewability and stability of photocatalyst were determinated and a possible mechanism of photocatalytic degradation was also proposed.展开更多
In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium...In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97% 98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.展开更多
基金Project(2014FJ3041)supported by the Research Funds of Science and Technology Agency of Hunan Provincial,ChinaProject(14A076)supported by the Research Funds of Education Agency of Hunan Provincial,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘CdS quantum dots sensitized platelike WO_3 photoelectrodes were successfully synthesized by a facile hydrothermal method and a modified chemical bath deposition(CBD) technique.To further improve the stability of the photoelectrodes in alkaline environment,the platelike WO_3 films were treated with TiCl_4 to form a nano-TiO_2 buffer layer on the WO_3 plate surface before loading CdSQDs.The resulting electrodes were characterized by using XRD,SEM,HR-TEM and UV-vis spectrum.The photocatalytic activity of the resulting electrodes was investigated by degradation of methyl orange(MO) in aqueous solution.The photoelectrochemical(PEC) property of the resulting electrodes was also characterized by the linear sweep voltammetry.The results of both the degradation of MO and photocurrent tests indicated that the as-prepared CdSQDs sensitized WO_3 platelike photoelectrodes exhibit a significant improvement in photocatalytic degradation and PEC activity under visible light irradiation,compared with unsupported CdSQDs electrodes.Significantly,coating the WO_3 plates with nano-TiO_2 obviously facilitate the charge separation and retards the charge-pair recombination,and results in a highest activity for QDsCdS/TiO_2/WO_3 photoelectrodes.
基金Project(8451063201001261) supported by the Guangdong Natural Science Fund Committee,ChinaProject(LYM08022) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China+1 种基金Project (2007A032400001, 2008A030202010) supported by the Scientific and Technological Planning of Guangdong Province,ChinaProject(216113132) supported by the Scientific Research Cultivation and Innovation Fund, Jinan University,China
文摘The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2 ) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2 , which indicates the significance of O2 . The addition of NaN 3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘The hierarchical BiOCl_(x)Br_(1–x)was synthesized by a simple solvothermal method.The samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),UV-visible diffuse reflectance spectroscopy(UV-vis DRS)and Brunauer-Emmett-Teller adsorption method.Compared to pure BiOCl or BiOBr,the BiOCl_(x)Br_(1–x)solid solution has enhanced photocatalytic degradation activity for rhodamine B.This phenomenon can be explained to the hierarchical structure,lager specific surface area and appropriate energy gap of the obtained BiOCl_(x)Br_(1–x)solid solution.The renewability and stability of photocatalyst were determinated and a possible mechanism of photocatalytic degradation was also proposed.
文摘In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97% 98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.