期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Efficient Perovskite Quantum Dots Light-emitting Diodes:Challenges and Optimization 被引量:1
1
作者 LI Mengjiao WANG Ye +1 位作者 WANG Yakun LIAO Liangsheng 《发光学报》 北大核心 2025年第3期452-461,共10页
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel... Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs. 展开更多
关键词 perovskite quantum dot light-emitting diodes(Pe-QLEDs) PHOTOLUMINESCENCE DEFECTS ion migration
在线阅读 下载PDF
Growth,leaf anatomy,and photosynthesis of cotton(Gossypium hirsutum L.)seedlings in response to four light-emitting diodes and high pressure sodium lamp 被引量:1
2
作者 ZHANG Yichi LIAO Baopeng +3 位作者 LI Fangjun ENEJI AEgrinya DU Mingwei TIAN Xiaoli 《Journal of Cotton Research》 CAS 2024年第1期79-89,共11页
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp... Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage. 展开更多
关键词 Cotton seedling light-emitting diodes BIOMASS Palisade cell PHOTOSYNTHESIS
在线阅读 下载PDF
Enhancing The Efficiency of White Organic Light-emitting Diode Using Energy Recyclable Photovoltaic Cells 被引量:2
3
作者 Meiso YOKOYAMA WU Chung-ming SU Shui-hsiang 《发光学报》 EI CAS CSCD 北大核心 2012年第1期1-6,共6页
We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.T... We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.The device is called a PVOLED.It has a glass / ITO / CuPc / m-MTDATA ∶ V 2 O 5 / NPB / CBP ∶ FIrpic ∶ DCJTB / BPhen / LiF / Al / P3HT∶ PCBM / V 2 O 5 / Al structure.The power recycling efficiency of 10.133% is achieved under the WOLED of PVOLED operated at 9 V and at a brightness of 2 110 cd / m 2,when the conversion efficiency of OPV is 2.3%.We have found that the power recycling efficiency is decreased under high brightness and high applied voltage due to an increase input power of WOLED.High efficiency(18.3 cd / A) and high contrast ratio(9.3) were obtained at the device operated at 2 500 cd / m 2 under an ambient illumination of 24 000 lx.Reasonable white light emission with Commission Internationale De L'Eclairage(CIE) color coordinates of(0.32,0.44) at 20 mA / cm 2 and slight color shift occurred in spite of a high current density of 50 mA / cm 2.The proposed PVOLED is highly promising for use in outdoors display applications. 展开更多
关键词 white organic light-emitting diode contrast ratio organic photovoltaic cell PVOLED
在线阅读 下载PDF
GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes
4
作者 JIANG Hao-hong SU Hang +1 位作者 CHEN Li-xiang TAN Xing-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3737-3746,共10页
Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state ligh... Compared to conventional quantum dot light-emitting diodes,tandem quantum dot light-emitting diodes(TQLEDs)possess higher device efficiency and more applications in the field of flat panel display and solid-state lighting in the future.The TQLED is a multilayer structure device which connects two or more light-emitting units by using an interconnection layer(ICL),which plays an extremely important role in the TQLED.Therefore,realizing an effective ICL is the key to obtain high-efficiency TQLEDs.In this work,the p-type materials polys(3,4-ethylenedioxythiophene),poly(styrenesulfonate)(PEDOT:PSS)and the n-type material zinc magnesium oxide(ZnMgO),were used,and an effective hybrid ICL,the PEDOT:PSS-GO/ZnMgO,was obtained by doping graphene oxide(GO)into PEDOT:PSS.The effect of GO additive on the ICL was systematically investigated.It exhibits that the GO additive brought the fine charge carrier generation and injection capacity simultaneously.Thus,the all solutionprocessed red TQLEDs were prepared and characterized for the first time.The maximum luminance of 40877 cd/m^(2) and the highest current efficiency of 19.6 cd/A were achieved,respectively,showing a 21%growth and a 51%increase when compared with those of the reference device without GO.The encouraging results suggest that our investigation paves the way for efficient all solution-processed TQLEDs. 展开更多
关键词 tandem quantum dot light-emitting diodes all solution-processed interconnection layer graphene oxide current efficiency
在线阅读 下载PDF
A series of iridium(Ⅲ)complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties:A density functional theory study
5
作者 QIN Zhengkun PAN Zicong +2 位作者 TIAN Hui ZHANG Wanyi SONG Mingxing 《无机化学学报》 北大核心 2025年第6期1235-1244,共10页
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh... We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction. 展开更多
关键词 density functional theory organic light-emitting diodes luminescent materials Ir(Ⅲ)complexes
在线阅读 下载PDF
Growth Control of Quasi-two-dimensional Perovskites:Structure-dependent Exciton and Charge Behavior
6
作者 DONG Wei LI Jing +2 位作者 YIN Wenxu ZHANG Xiaoyu ZHENG Weitao 《发光学报》 EI CAS CSCD 北大核心 2024年第11期1767-1781,共15页
While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED... While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs. 展开更多
关键词 quasi-two-dimensional perovskites light-emitting diodes growth control energy transfer
在线阅读 下载PDF
OLED-on-silicon chip with new pixel circuit 被引量:2
7
作者 刘艳艳 耿卫东 代永平 《Journal of Central South University》 SCIE EI CAS 2012年第5期1276-1282,共7页
A low power 640×480 OLED-on-silicon chip design that used in microdisplay was presented. A novel pixel circuit was proposed to meet the special requirement of OLED-on-silicon. The novel pixel consists of three tr... A low power 640×480 OLED-on-silicon chip design that used in microdisplay was presented. A novel pixel circuit was proposed to meet the special requirement of OLED-on-silicon. The novel pixel consists of three transistors and one capacitor (3T 1C). It has simple structure and can effectively reduce the current glitch generated during the AC driving from 55 pA to 7.5 pA, so that it can improve the precision of grayscale of display as well as extend the lifetime of (])LED material. Except for the pixel array, low power row driver, column driver and other functional modules were also integrated on the chip. Several techniques were adopted to reduce the power consumption and frequency requirement of the chip. Finally, a 16×3×12 resolution chip was fabricated with standard 0.35 μm CMOS process of CSM and the chip can operate correctly. 展开更多
关键词 organic light-emitting diode (OLED) pixel circuit ac driving
在线阅读 下载PDF
Ti_(3)C_(2)T_(x) MXene for organic/perovskite optoelectronic devices 被引量:1
8
作者 CHEN Ke-fan CAI Ping +3 位作者 PENG Hong-liang XUE Xiao-gang WANG Zhong-min SUN Li-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3935-3958,共24页
MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent... MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene organic/perovskite solar cells organic/perovskite light-emitting diodes ELECTRODE interface layer active layer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部