Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution ...Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.展开更多
Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high st...Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high stress generated by superposition to cut shell into regular fragments.Additionally,it can be combined with different initiation methods to alter the fragmentation outcomes.In this study,aiming at the fracture strain of metal cylindrical shell driven by explosive charge with waveform regulator,theoretical analysis was first adopted to obtain the prediction model of the fracture strain of cylindrical shell with waveform regulator and the model of the axial distribution of the stress concentration factor.On this basis,both theoretical analysis and numerical models were utilized to investigate the effect of waveform regulator on the initial velocity of fragments.Finally,experiments were conducted to validate the fracture strain prediction model for cylindrical shell with waveform regulator.The research results show that the collision angles of the detonation waves at different axial positions are different,which leads to the stress concentration factor on the shell presenting a trend of gradually decreasing,then sharply increasing,and then rapidly decreasing along the axial direction.Additionally,the changes in the slot spacing and the thickness of outer charge will also affect the stress concentration factor,and the influence of outer charge thickness is relatively large.The smaller the ratio of charge volume to waveform regulator volume,the larger the axial sparse wave intensity and the more the fragment initial velocity decrease.From the initiation end to the non-initiation end,the failure modes of the shell sequentially change from pure shear,to mixed tensile-shear,and finally to pure tensile failure.The experimental results are in good agreement with the calculated results of the fracture strain model,and the maximum relative error is less than 10%,which indicates that the fracture strain prediction model of the cylindrical shell with waveform regulator established in this paper by considering the increase of elastic energy per unit volume caused by stress concentration on the shell is reliable.展开更多
Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in t...Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.展开更多
The effect of range-Doppler coupling caused by aircraft moving at very high speed makes trouble on selection of waveform parameters by using frequency-modulated interrupted continuous wave (FMICW) or frequency-coded p...The effect of range-Doppler coupling caused by aircraft moving at very high speed makes trouble on selection of waveform parameters by using frequency-modulated interrupted continuous wave (FMICW) or frequency-coded pulse (FCP). It also limits the increasing of coherent integration time. In this paper, application of coherent phase-coded pulse train (CPCPT) solves range-Doppler coupling well. Relevant processing of CPCPT consists of three parts: Doppler preprocessing, pulse compression, and Doppler post-processing. The velocity information obtained by Doppler preprocessing is used for better pulse compression and range tracking. Doppler post-processing with range tracking could make longer coherent accumulation for better detection of target and higher velocity resolution. Finally, examples of data simulation are given to demonstrate the achievements mentioned above.展开更多
由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段...由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。展开更多
基金supported by the National Natural Science Foundation of China (6087213461072117)
文摘Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.
基金supported by the National Natural Science Foundation of China(Grant No.12302437)Natural Science Foundation of Jiangsu Province(Grant No.SBK2023045424)。
文摘Waveform regulator in charge is a method that can realize multi-source detonation wave superposition through a single point detonation.The method does not need to weaken the strength of shell,and relies on the high stress generated by superposition to cut shell into regular fragments.Additionally,it can be combined with different initiation methods to alter the fragmentation outcomes.In this study,aiming at the fracture strain of metal cylindrical shell driven by explosive charge with waveform regulator,theoretical analysis was first adopted to obtain the prediction model of the fracture strain of cylindrical shell with waveform regulator and the model of the axial distribution of the stress concentration factor.On this basis,both theoretical analysis and numerical models were utilized to investigate the effect of waveform regulator on the initial velocity of fragments.Finally,experiments were conducted to validate the fracture strain prediction model for cylindrical shell with waveform regulator.The research results show that the collision angles of the detonation waves at different axial positions are different,which leads to the stress concentration factor on the shell presenting a trend of gradually decreasing,then sharply increasing,and then rapidly decreasing along the axial direction.Additionally,the changes in the slot spacing and the thickness of outer charge will also affect the stress concentration factor,and the influence of outer charge thickness is relatively large.The smaller the ratio of charge volume to waveform regulator volume,the larger the axial sparse wave intensity and the more the fragment initial velocity decrease.From the initiation end to the non-initiation end,the failure modes of the shell sequentially change from pure shear,to mixed tensile-shear,and finally to pure tensile failure.The experimental results are in good agreement with the calculated results of the fracture strain model,and the maximum relative error is less than 10%,which indicates that the fracture strain prediction model of the cylindrical shell with waveform regulator established in this paper by considering the increase of elastic energy per unit volume caused by stress concentration on the shell is reliable.
基金supported by the National Natural Science Foundation of China(62001481,61890542)the Natural Science Foundation of Hunan Province(2021JJ40686).
文摘Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.
文摘The effect of range-Doppler coupling caused by aircraft moving at very high speed makes trouble on selection of waveform parameters by using frequency-modulated interrupted continuous wave (FMICW) or frequency-coded pulse (FCP). It also limits the increasing of coherent integration time. In this paper, application of coherent phase-coded pulse train (CPCPT) solves range-Doppler coupling well. Relevant processing of CPCPT consists of three parts: Doppler preprocessing, pulse compression, and Doppler post-processing. The velocity information obtained by Doppler preprocessing is used for better pulse compression and range tracking. Doppler post-processing with range tracking could make longer coherent accumulation for better detection of target and higher velocity resolution. Finally, examples of data simulation are given to demonstrate the achievements mentioned above.
文摘由于柔性多状态开关(soft normal open point,SNOP)复杂的控制策略及其弱馈特性,传统配电网故障定位方法难以适用于柔性互联配电网(flexible distribution network,FDN)。因此,文中提出一种利用电流正序分量波形相似性进行FDN故障区段定位的方法。首先,针对SNOP的典型控制策略,分析FDN的短路故障特征。其次,计算配电网中不同故障位置电流正序分量的Tanimoto系数,通过对比不同位置的电流正序分量波形相似性,构建FDN短路故障定位判据,并通过Teager能量算子(Teager energy operation,TEO)实现故障时刻的精确定位,利用智能配电终端(smart terminal unit,STU)传递信息。最后,通过建模仿真对所提方法进行分析验证,结果表明该方法能够对故障区段进行准确定位,不受故障位置、故障类型、过渡电阻、采样频率及通信延时等因素的影响,验证了该方法的可行性与有效性。