At present,there is a growing demand for safe and low-pollution rock-breaking technology.The rock breaking technology of supercritical CO_(2)thermal fracturing has many advantages,such as no dust noise,no explosion,hi...At present,there is a growing demand for safe and low-pollution rock-breaking technology.The rock breaking technology of supercritical CO_(2)thermal fracturing has many advantages,such as no dust noise,no explosion,high efficiency,controllable shock wave and so on.Fully considering the combustion rate of energetic materials,heat and mass transfer,CO_(2)phase change and transient nonlinear flow process,a multi-field coupled numerical model of rock breaking by supercritical CO_(2)thermal fracturing was established based on the existing experiments.The influence factors of CO_(2)thermal fracturing process were studied to provide theoretical guidance for site construction parameters optimization.The numerical simulation results were in good agreement with the experimental observation results.The results showed that the maximum temperature of CO_(2)and the growth rate of CO_(2)pressure during the fracturing process would decrease accordingly with the increase of CO_(2)initial pressure.But the change in CO_(2)peak pressure wasn't significant.Appropriately increasing the heat source power could improve the heating and pressurization rate of CO_(2)and accelerate the damage rate of rock.The relevant results were of great importance for promoting the application of rock breaking by supercritical CO_(2)thermal fracturing technology.展开更多
The phase transition, elastic and electronic properties of three phases(phase Ⅰ,Ⅱ, and Ⅲ) of Sb_2Te_3 are investigated by using the generalized gradient approximation(GGA) with the PBESOL exchange–correlation ...The phase transition, elastic and electronic properties of three phases(phase Ⅰ,Ⅱ, and Ⅲ) of Sb_2Te_3 are investigated by using the generalized gradient approximation(GGA) with the PBESOL exchange–correlation functional in the framework of density-functional theory. Some basic physical parameters, such as lattice constants, bulk modulus, shear modulus,Young's modulus, Poisson's ratio, acoustic velocity, and Debye temperature Θ are calculated. The obtained lattice parameters under various pressures are consistent with experimental data. Phase transition pressures are 9.4 GPa(Ⅰ→Ⅱ) and 14.1 GPa(Ⅱ→Ⅲ), which are in agreement with the experimental results. According to calculated elastic constants, we also discuss the ductile or brittle characters and elastic anisotropies of three phases. Phases Ⅰ and Ⅲ are brittle, while phaseⅡ is ductile. Of the three phases, phaseⅡ has the most serious degree of elastic anisotropy and phase Ⅲ has the slightest one.Finally, we investigate the partial densities of states(PDOSs) of three phases and find that the three phases possess some covalent features.展开更多
The pressure induced phase transitions of TiO2 from anatase to columbite structure and from rutile to columbite structure and the temperature induced phase transition from anatase to rutile structure and from columbit...The pressure induced phase transitions of TiO2 from anatase to columbite structure and from rutile to columbite structure and the temperature induced phase transition from anatase to rutile structure and from columbite to rutile structure are investigated by ab initio plane-wave pseudopotential density functional theory method (DFT), together with quasi-harmonic Debye model. It is found that the zero-temperature transition pressures from anatase to columbite and from rutile to columbite are 4.55 GPa and 19.92 GPa, respectively. The zero-pressure transition temperatures from anatase to rutile and from columbite to rutile are 950 K and 1500 K, respectively. Our results are consistent with the available experimental data and other theoretical results. Moreover, the dependence of the normalized primitive cell volume V/Vo on pressure and the dependences of thermal expansion coefficient α on temperature and pressure are also obtained successfully.展开更多
Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we br...Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO_2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO_2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO_2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets,and nanoporous materials, and pressure-induced amorphization(PIA) and polyamorphism in ultrafine nanoparticles and TiO_2-B nanoribbons. Various TiO_2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO_2 nanoribbons, α-PbO_2-type TiO_2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO_2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO_2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.展开更多
Based on first-principles simulations,we revisit the crystal structures,electronic structures,and structural stability of the layered transition metal dichalcogenides(TMDCs)NbS2,and shed more light on the crucial role...Based on first-principles simulations,we revisit the crystal structures,electronic structures,and structural stability of the layered transition metal dichalcogenides(TMDCs)NbS2,and shed more light on the crucial roles of the van der Waals(vdW)interactions.Theoretically calculated results imply that the vdW corrections are important to reproduce the layered crystal structure,which is significant to correctly describe the electronic structure of NbS2.More interestingly,under hydrostatic pressure or tensile strain in ab plane,an isostructural phase transition from two-dimensional layered structure to three-dimensional bulk in the I4/mmm phase has been uncovered.The abnormal structural transition is closely related to the electronic structure instability and interlayer bonding effects.The interlayer Nb-S distances collapse and the interlayer vdW interactions disappear,concomitant with new covalent bond emerging and increasing coordination number.Present work highlights the significance of the vdW interactions,and provides new insights on the unconventional structural transitions in NbS2,which will attract wide audience working in the hectic field of TMDCs.展开更多
The synthesized monoclinic(B-type) phase of Y2O3 has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature. A phase transition occurs from monoclini...The synthesized monoclinic(B-type) phase of Y2O3 has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature. A phase transition occurs from monoclinic(B-type) to hexagonal(A-type) phase at 23.5 GPa and these two phases coexist even at the highest pressure. Parameters of isothermal equation of state are V0= 69.0(1)A3, K0= 159(3) GPa, K0= 4(fixed) for the B-type phase and V0= 67.8(2) A3, K0= 156(3) GPa,K'0= 4fixed for the A-type phase. The structural anisotropy increases with increasing pressure for both phases.展开更多
基金financially supported by National Key R&D Program-Sino US intergovernmental Cooperation Project(No.2023YFE0120500)Science and Technology Program of the Ministry of Housing and Urban-Rural Development of the People's Republic of China(No.2021-K-087)+1 种基金the Surface Project of the Natural Science Foundation of Jiangsu Province,China(No.BK20201313)the State Key Laboratory Open Fund Project of China(No.HKLBEF202004)。
文摘At present,there is a growing demand for safe and low-pollution rock-breaking technology.The rock breaking technology of supercritical CO_(2)thermal fracturing has many advantages,such as no dust noise,no explosion,high efficiency,controllable shock wave and so on.Fully considering the combustion rate of energetic materials,heat and mass transfer,CO_(2)phase change and transient nonlinear flow process,a multi-field coupled numerical model of rock breaking by supercritical CO_(2)thermal fracturing was established based on the existing experiments.The influence factors of CO_(2)thermal fracturing process were studied to provide theoretical guidance for site construction parameters optimization.The numerical simulation results were in good agreement with the experimental observation results.The results showed that the maximum temperature of CO_(2)and the growth rate of CO_(2)pressure during the fracturing process would decrease accordingly with the increase of CO_(2)initial pressure.But the change in CO_(2)peak pressure wasn't significant.Appropriately increasing the heat source power could improve the heating and pressurization rate of CO_(2)and accelerate the damage rate of rock.The relevant results were of great importance for promoting the application of rock breaking by supercritical CO_(2)thermal fracturing technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204192 and 11174214)Jointly supported by the National Natural Science Foundation of Chinathe China Academy of Engineering Physics(NSAF)(Grant No.U1430117)
文摘The phase transition, elastic and electronic properties of three phases(phase Ⅰ,Ⅱ, and Ⅲ) of Sb_2Te_3 are investigated by using the generalized gradient approximation(GGA) with the PBESOL exchange–correlation functional in the framework of density-functional theory. Some basic physical parameters, such as lattice constants, bulk modulus, shear modulus,Young's modulus, Poisson's ratio, acoustic velocity, and Debye temperature Θ are calculated. The obtained lattice parameters under various pressures are consistent with experimental data. Phase transition pressures are 9.4 GPa(Ⅰ→Ⅱ) and 14.1 GPa(Ⅱ→Ⅲ), which are in agreement with the experimental results. According to calculated elastic constants, we also discuss the ductile or brittle characters and elastic anisotropies of three phases. Phases Ⅰ and Ⅲ are brittle, while phaseⅡ is ductile. Of the three phases, phaseⅡ has the most serious degree of elastic anisotropy and phase Ⅲ has the slightest one.Finally, we investigate the partial densities of states(PDOSs) of three phases and find that the three phases possess some covalent features.
基金Project supported by the National Natural Science Foundation of China (Grant No 10776022)
文摘The pressure induced phase transitions of TiO2 from anatase to columbite structure and from rutile to columbite structure and the temperature induced phase transition from anatase to rutile structure and from columbite to rutile structure are investigated by ab initio plane-wave pseudopotential density functional theory method (DFT), together with quasi-harmonic Debye model. It is found that the zero-temperature transition pressures from anatase to columbite and from rutile to columbite are 4.55 GPa and 19.92 GPa, respectively. The zero-pressure transition temperatures from anatase to rutile and from columbite to rutile are 950 K and 1500 K, respectively. Our results are consistent with the available experimental data and other theoretical results. Moreover, the dependence of the normalized primitive cell volume V/Vo on pressure and the dependences of thermal expansion coefficient α on temperature and pressure are also obtained successfully.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808200)the National Natural Science Foundation of China(Grant Nos.11374120,11004075,10979001,51025206,51032001,and 21073071)the Cheung Kong Scholars Programme of China
文摘Recently, the high pressure study on the TiO_2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO_2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO_2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO_2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO_2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets,and nanoporous materials, and pressure-induced amorphization(PIA) and polyamorphism in ultrafine nanoparticles and TiO_2-B nanoribbons. Various TiO_2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO_2 nanoribbons, α-PbO_2-type TiO_2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO_2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO_2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11864008)Guangxi Natural Science Foundation,China(Grant Nos.2018GXNSFAA138185 and 2018AD19200)High performance computational resources provided by LvLiang Cloud Computing Center of China and National Supercomputer Center on TianHe-2 are gratefully acknowledged.
文摘Based on first-principles simulations,we revisit the crystal structures,electronic structures,and structural stability of the layered transition metal dichalcogenides(TMDCs)NbS2,and shed more light on the crucial roles of the van der Waals(vdW)interactions.Theoretically calculated results imply that the vdW corrections are important to reproduce the layered crystal structure,which is significant to correctly describe the electronic structure of NbS2.More interestingly,under hydrostatic pressure or tensile strain in ab plane,an isostructural phase transition from two-dimensional layered structure to three-dimensional bulk in the I4/mmm phase has been uncovered.The abnormal structural transition is closely related to the electronic structure instability and interlayer bonding effects.The interlayer Nb-S distances collapse and the interlayer vdW interactions disappear,concomitant with new covalent bond emerging and increasing coordination number.Present work highlights the significance of the vdW interactions,and provides new insights on the unconventional structural transitions in NbS2,which will attract wide audience working in the hectic field of TMDCs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1232204 and 41502029)China Postdoctoral Science Foundation(Grant No.2015M580679)
文摘The synthesized monoclinic(B-type) phase of Y2O3 has been investigated by in situ angle-dispersive x-ray diffraction in a diamond anvil cell up to 44 GPa at room temperature. A phase transition occurs from monoclinic(B-type) to hexagonal(A-type) phase at 23.5 GPa and these two phases coexist even at the highest pressure. Parameters of isothermal equation of state are V0= 69.0(1)A3, K0= 159(3) GPa, K0= 4(fixed) for the B-type phase and V0= 67.8(2) A3, K0= 156(3) GPa,K'0= 4fixed for the A-type phase. The structural anisotropy increases with increasing pressure for both phases.