期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RCMDE和KFCM的煤矿电网故障选线方法 被引量:6
1
作者 韩国国 史小军 +2 位作者 王晖 程卫健 穆艳祥 《工矿自动化》 北大核心 2022年第8期92-99,共8页
针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅... 针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅值和极性差异的选线方法适用性有限;若线路中的零序电流互感器极性接反,基于极性的方法直接失效;采样不同步时,基于波形相似度的选线方法难以得到正确结果。为克服上述局限性,引入RCMDE来度量各线路暂态零序电流信号的复杂程度和不规则度,以RCMDE作为选线特征量。采用KFCM算法对RCMDE进行聚类分析,以实现故障线路自动识别,并通过判断轮廓系数是否超过阈值来区分母线故障和馈线故障。最后,通过聚类得到的隶属度矩阵判断馈线故障点所在线路。仿真结果表明:①故障点所在的故障线路对应的RCMDE曲线与非故障线路间具有较大差异,可分为2类。RCMDE可作为筛选故障线路的特征指标。②发生母线故障时聚类结果中存在平均轮廓系数小于阈值的分簇,而发生馈线故障时聚类结果各分簇的轮廓系数均大于阈值,在各类故障场景下,基于RCMDE和KFCM的煤矿电网故障选线方法均能实现正确选线,说明其准确性不受故障线路、故障位置、故障合闸角及接地电阻等因素的影响。③在噪声干扰情况下,基于RCMDE和KFCM的煤矿电网故障选线方法在小电阻接地或高阻接地情况下均能实现正确选线,具有较强的抗干扰能力。④在采样不同步及故障线路零序电流互感器极性反接等情况下,基于RCMDE和KFCM的煤矿电网故障选线方法仍可实现正确选线,选线结果具有较高的鲁棒性。 展开更多
关键词 谐振接地系统 煤矿电网 单相接地故障 故障选线 精细复合多尺度散布熵 核模糊C均值聚类 暂态零序电流
在线阅读 下载PDF
基于VMD、PTSMFE与GWO-SVM的直流充电桩电源模块故障诊断方法研究
2
作者 刘志峰 蒋浩 +1 位作者 刘贺 李新宇 《中国测试》 2025年第8期87-97,共11页
为有效实施直流充电桩电源模块的回收再利用,必须克服故障诊断中串并联开关器件特征提取困难和故障定位不准确的难题。为此,提出变分模态分解(variational modal decomposition, VMD)、相位复合时移多尺度模糊熵(phase compound time-sh... 为有效实施直流充电桩电源模块的回收再利用,必须克服故障诊断中串并联开关器件特征提取困难和故障定位不准确的难题。为此,提出变分模态分解(variational modal decomposition, VMD)、相位复合时移多尺度模糊熵(phase compound time-shift multiscale fuzzy entropy, PTSMFE)和灰狼优化算法优化支持向量机分类器(gray wolf optimization algorithm-support vector machine classifier, GWO-SVM)的充电桩故障诊断方法。首先将采集的原始故障信号分解成多组本征模态函数(intrinsic mode function, IMF),再利用PTSMFE提取出故障信号的原始相位信息,并转化成相位系数后加入熵值中,得到各故障状态的特征向量。最后将特征向量输入GWO-SVM进行故障识别分类。实验结果表明:与常用的小波分析(wavelet analysis)特征提取和BP(back propagation)神经网络故障诊断方法进行对比,该文方法展现出准确性与高效性,分类识别准确率达到97.27%。 展开更多
关键词 直流充电桩电源模块 故障诊断 回收再利用 相位复合时移多尺度模糊熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部