A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population...A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.展开更多
A phase-domain blind estimator of symbol duration based on Haar wavelet transform(HWT) is proposed.It can estimate the symbol duration of phase modulated signals,such as M-ary phase-shift keying(MPSK) signals and ...A phase-domain blind estimator of symbol duration based on Haar wavelet transform(HWT) is proposed.It can estimate the symbol duration of phase modulated signals,such as M-ary phase-shift keying(MPSK) signals and polyphase coded signals.The closed form of the spectrum of HWT is derived.Theoretical analysis shows the frequency of the first spectral peak is equal to the symbol rate,which is the reciprocal of symbol duration.Thus the symbol duration can be extracted from the spectrum.Subsequently,the optimum wavelet scale is determined according to the maximum output signal to noise ratio(OSNR) criterion.MAT-LAB simulations show that this algorithm can blindly estimate the symbol duration without any prior knowledge.This estimator need not estimate the carrier frequency and has the characteristics of low computation complexity and high accuracy.展开更多
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano...The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.展开更多
瞬时测频(instantaneous frequency measurement,IFM)接收机是电子侦察中非常重要的测频资源,其结构简单、灵敏度高、侦察频带宽、分辨率高,可以快速测定被测信号的频率,在现代电子战中得到广泛应用。基于IFM微波鉴相器在某一瞬间只能...瞬时测频(instantaneous frequency measurement,IFM)接收机是电子侦察中非常重要的测频资源,其结构简单、灵敏度高、侦察频带宽、分辨率高,可以快速测定被测信号的频率,在现代电子战中得到广泛应用。基于IFM微波鉴相器在某一瞬间只能响应一个信号的特性,结合IFM工作原理,研究了一种新的(超过2个信号)对IFM干扰策略,并分析了干扰机理,通过模拟仿真对IFM的干扰效果进行了评估。仿真结果表明:多信号交叠可以对IFM系统产生明显的干扰效果,可以使得其无法测得正确频率,并错误地输出同时到达信号指示。展开更多
基金supported by the National Natural Science Foundation of China (60601016)
文摘A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.
基金supported by the Postdoctoral Science Foundation of China (20080441050)
文摘A phase-domain blind estimator of symbol duration based on Haar wavelet transform(HWT) is proposed.It can estimate the symbol duration of phase modulated signals,such as M-ary phase-shift keying(MPSK) signals and polyphase coded signals.The closed form of the spectrum of HWT is derived.Theoretical analysis shows the frequency of the first spectral peak is equal to the symbol rate,which is the reciprocal of symbol duration.Thus the symbol duration can be extracted from the spectrum.Subsequently,the optimum wavelet scale is determined according to the maximum output signal to noise ratio(OSNR) criterion.MAT-LAB simulations show that this algorithm can blindly estimate the symbol duration without any prior knowledge.This estimator need not estimate the carrier frequency and has the characteristics of low computation complexity and high accuracy.
文摘The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.
文摘瞬时测频(instantaneous frequency measurement,IFM)接收机是电子侦察中非常重要的测频资源,其结构简单、灵敏度高、侦察频带宽、分辨率高,可以快速测定被测信号的频率,在现代电子战中得到广泛应用。基于IFM微波鉴相器在某一瞬间只能响应一个信号的特性,结合IFM工作原理,研究了一种新的(超过2个信号)对IFM干扰策略,并分析了干扰机理,通过模拟仿真对IFM的干扰效果进行了评估。仿真结果表明:多信号交叠可以对IFM系统产生明显的干扰效果,可以使得其无法测得正确频率,并错误地输出同时到达信号指示。