Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O soluti...Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly.展开更多
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due t...Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.展开更多
An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoet...An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1. The hydrogen-bonding interactions between S1 and S2 were investigated by IH NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.展开更多
Head-to-tail bonded perylene bisimide(PBI)dyads with different branched alkyl chains substituted at the terminal imide position show various stacking modes,which results in different effects on the excitonic processes...Head-to-tail bonded perylene bisimide(PBI)dyads with different branched alkyl chains substituted at the terminal imide position show various stacking modes,which results in different effects on the excitonic processes and electron transportation.The dyad bearing branched alkyl chains with the branching sites close to the imide positions forms homogeneously amorphous state,while with branching sites being away from the imide positions the PBI core tend to stack with multiple modes.There are fewer energy trapping sites in the homogeneously amorphous state,but in the multiple stacking system the strongπ-πinteractions give more trapping sites.Our study demonstrates that the aggregation state of PBI-based acceptors plays an important role in the performances of organic solar cells(OSCs).Multiple stacking needs to be diminished to avoid the constrained exciton dissociation and retarded charge transport in the active layer.展开更多
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce...In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.展开更多
文摘Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly.
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
文摘Doping perylene diimide(PDI)into a polymer matrix is a simple strategy to prepare near-infrared(NIR)reflective materials,but the mechanical properties and NIR reflectance properties are significantly compromised due to macro-phase separation.In this study,a novel polymer(denoted as PU-PDI)with intrinsic NIR reflective proper⁃ties was synthesized by covalent incorporation of PDI units into polyurethane chains.Its photophysical characteris⁃tics,mechanical property and NIR reflectance property are investigated in detail.The results show that covalent in⁃corporation reduces the severe aggregation of PDI units,thereby endows PU-PDI with excellent mechanical property.The elongation at break of PU-PDI can reach more than 700%,and the breaking strength is 34.11 MPa.Moreover,compared to the blending system,PU-PDI possesses enhanced NIR reflection ability due to the better dispersion of PDI units.
基金Project(50573019)support by the National Natural Science Foundation of China
文摘An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1. The hydrogen-bonding interactions between S1 and S2 were investigated by IH NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.
文摘Head-to-tail bonded perylene bisimide(PBI)dyads with different branched alkyl chains substituted at the terminal imide position show various stacking modes,which results in different effects on the excitonic processes and electron transportation.The dyad bearing branched alkyl chains with the branching sites close to the imide positions forms homogeneously amorphous state,while with branching sites being away from the imide positions the PBI core tend to stack with multiple modes.There are fewer energy trapping sites in the homogeneously amorphous state,but in the multiple stacking system the strongπ-πinteractions give more trapping sites.Our study demonstrates that the aggregation state of PBI-based acceptors plays an important role in the performances of organic solar cells(OSCs).Multiple stacking needs to be diminished to avoid the constrained exciton dissociation and retarded charge transport in the active layer.
基金financial support from the National Natural Science Foundation of China(Grant No.21801016)the Science and Technology on Applied Physical Chemistry Laboratory(Grant No.6142602220304)。
文摘In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.