This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifest...The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifests that the linear topography effect with the change of latitude can induce solitary Rossby wave.展开更多
In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the...In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.展开更多
The radiation of a loop antenna embedded in a dissipative medium with complex boundaries isanalyzed by a perturbation method and an efficient fast multiple-integration technique. But theperturbation method can not be ...The radiation of a loop antenna embedded in a dissipative medium with complex boundaries isanalyzed by a perturbation method and an efficient fast multiple-integration technique. But theperturbation method can not be used directly because there is a finite-length metal cylinder in the vicinityof the loop antenna. The prolate ellipsoid equivalence of the metal cylinder is made, then the cylinder maybe removed and the perturbation method is valid. Numerical results indicate that the approach is accurateat low frequencies and stable.展开更多
To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is ...To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.展开更多
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.
基金The project sponsored by the Education Depart ment of Inner Mongolia(NJZY:08005,NJ:09066)Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOOCAW0805)the Science of Inner Mongolia University of Technology(X200933)
文摘The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifests that the linear topography effect with the change of latitude can induce solitary Rossby wave.
基金Project (51475411) supported by the National Natural Science Foundation of ChinaProject (LY15E070002) supported by Zhejiang Provincial Natural Science Foundation of China
文摘In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.
文摘The radiation of a loop antenna embedded in a dissipative medium with complex boundaries isanalyzed by a perturbation method and an efficient fast multiple-integration technique. But theperturbation method can not be used directly because there is a finite-length metal cylinder in the vicinityof the loop antenna. The prolate ellipsoid equivalence of the metal cylinder is made, then the cylinder maybe removed and the perturbation method is valid. Numerical results indicate that the approach is accurateat low frequencies and stable.
基金Project(50735007) supported by the National Natural Science Foundation of ChinaProject(2010ZX04001-151) supported by Important National Science & Technology Specific Program of China
文摘To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.