Soft and medium-hard rocks are subjected to high rheology under high stress,and they are prone to a relatively large-degree of deformation when perturbed by external impacting loads.The phenomenon where rock deformati...Soft and medium-hard rocks are subjected to high rheology under high stress,and they are prone to a relatively large-degree of deformation when perturbed by external impacting loads.The phenomenon where rock deformation is developed due to external impacting perturbation in the rheological state is defined as the rock rheological perturbation effect.This work presents a new experimental system for investigating the rock rheological perturbation effect with experiments on medium-hard red sandstone.Results from our analysis show that red sandstone changes under two mechanical mechanisms:deformation-hardening effects at low stress states,and damage-fracture effects at high stress states when impacted by certain external impacting loads.Red sandstone tested in our experiments has a strain threshold of about 90% of the ultimate strain under the perturbation effect;the red sandstone is sensitive to a perturbed load when its actual strain exceeds the threshold.The perturbed deformation process of the rock can be divided into three phases:decline,approximately constant speed and acceleration.The rock will be rapidly destroyed when the perturbed deformation accumulates to a certain degree.The perturbation effect of rock deformation under uniaxial compression is more obvious than that under axial compression.Based on our experiment,a constitutive relation of the rock rheological perturbation effect is developed.展开更多
Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semi...Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semigroup and the sufficient condition concerning the robust controllability of the singular distributed parameter control system are obtained, in which the controllability for singular distributed parameter control system is not destroyed, if we perturb the equation by small bounded linear operator.展开更多
A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing ...A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.展开更多
A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is trans...A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is transmitted simultaneously. In order to maximize the beamforming gain, the transmitters use one bit feedback information to adjust the phase offset. It tracks the direction in which the signal strength at the receiver can increase. The directional search and perturbation theory is used to achieve the phase alignment. The feasibility of the proposed algorithm is proved both experimentally and theoretically. Simulation results show that the proposed algorithm can improve the convergent speed of the phase alignment.展开更多
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical...It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones.展开更多
The notions of practical φ0-stability were introduced for stochastic differential equations. Sufficient conditions on such practical properties were obtained by using the comparison principle and the cone-valued Lyap...The notions of practical φ0-stability were introduced for stochastic differential equations. Sufficient conditions on such practical properties were obtained by using the comparison principle and the cone-valued Lyapunov function methods. Based on an extended comparison theorem, a perturbation theory of stochastic differential systems was given.展开更多
The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size o...The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.展开更多
The heat transfer characteristic of honeycomb ceramic regenerator was optimized by the perturbation analytical-numerical method. The results show that there is a temperature efficiency peak and the corresponding optim...The heat transfer characteristic of honeycomb ceramic regenerator was optimized by the perturbation analytical-numerical method. The results show that there is a temperature efficiency peak and the corresponding optimal switch time. The decrease of air oxygen concentration leads to the decrease of maximum temperature efficiency. Optimal switch time is directly proportional to the matrix thickness. The solid heat conduction along the flow direction and the regenerator heat storage capacity of the unit volume have no impact on maximum temperature efficiency and optimal switch time. The temperature efficiency tendency based on the semi-analysis is the same as dispersion combustion tests with low oxygen concentration, and optimal switch time of 2-4 s agrees well with that of 4 s in high-temperature gasification tests. The possibility of design, operate and control a thin-walled regenerator with high efficiency by means of the perturbation method is proved.展开更多
Strong spatial variance of the imaging parameters and serious geometric distortion of the image are induced by the acceleration and vertical velocity in a high-squint synthetic aperture radar(SAR)mounted on maneuverin...Strong spatial variance of the imaging parameters and serious geometric distortion of the image are induced by the acceleration and vertical velocity in a high-squint synthetic aperture radar(SAR)mounted on maneuvering platforms.In this paper,a frequency-domain imaging algorithm is proposed based on a novel slant range model and azimuth perturbation resampling.First,a novel slant range model is presented for mitigating the geometric distortion according to the equal squint angle curve on the ground surface.Second,the correction of azimuth-dependent range cell migration(RCM)is achieved by introducing a high-order time-domain perturbation function.Third,an azimuth perturbation resampling method is proposed for azimuth compression.The azimuth resampling and the time-domain perturbation are used for correcting first-order and high-order azimuthal spatial-variant components,respectively.Experimental results illustrate that the proposed algorithm can improve the focusing quality and the geometric distortion correction accuracy of the imaging scene effectively.展开更多
The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to t...The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.展开更多
The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as vir...The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying obs...Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm.展开更多
The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and ...The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and small perturbation were studied.The analytical and numerical results show that widening (shrinking) road can enhance (reduce) the equilibrium speed and flow,and the increments (decrements) will increase with the absolute value of road width gradient.In addition,the numerical results illustrate that the new model can describe the effects of road width on the evolutions of uniform flow and small perturbation.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
The singularly perturbed problems for elliptic systems in a half space are con- sidered. Under suitable conditions, and by using the comparison theorem the existence and asymptotic behavior of solution for the boundar...The singularly perturbed problems for elliptic systems in a half space are con- sidered. Under suitable conditions, and by using the comparison theorem the existence and asymptotic behavior of solution for the boundary value problems are studied.展开更多
The Experimental Satellite on Electromagnetism Monitoring(ESEM) was proposed in 2003 and proved in 2013 after 10-years' scientific demonstration. The ESEM mission was proposed to be the first satellite of space-ba...The Experimental Satellite on Electromagnetism Monitoring(ESEM) was proposed in 2003 and proved in 2013 after 10-years' scientific demonstration. The ESEM mission was proposed to be the first satellite of space-based geophysical fields observation system in China with a lot of application prospects in earthquake science, geophysics, space sciences and so on. And coincide with the mission objectives, the satellite decides to use the Circular Sun Synchronous Orbit with an altitude of 507 km and descending node time at 14:00 LT. The payload assemble includes 8 instruments,Search-Coil Magnetometer, Electric Field Detector, High precision Magnetometer, GNSS occupation Receiver, Plasma Analyzer, Langmuir Probe, Energetic Particle Detector, and Three-frequency Transmitter. According to the planned schedule, the satellite is due to be launched in 2016–2017 and will be onboard operated for 5 years.展开更多
An extended-state-observer(ESO) based predictive control scheme is proposed for the autopilot of lunar landing.The slosh fuel masses exert forces and torques on the rigid body of lunar module(LM),such disturbances wil...An extended-state-observer(ESO) based predictive control scheme is proposed for the autopilot of lunar landing.The slosh fuel masses exert forces and torques on the rigid body of lunar module(LM),such disturbances will dramatically undermine the stability of autopilot system.The fuel sloshing dynamics and uncertainties due to the time-varying parameters are considered as a generalized disturbance which is estimated by an ESO from the measured attitude signals and the control input signals.Then a continuous-time predictive controller driven by the estimated states and disturbances is designed to obtain the virtual control input,which is allocated to the real control actuators according to a deadband logic.The 6-DOF simulation results reveal the effectiveness of the proposed method when dealing with the fuel sloshing dynamics and parameter perturbations.展开更多
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
基金Projects(51474218,51304127,50474029)supported by the National Natural Science Foundation of ChinaProject(2016M590646)supported by China Postdoctoral Science FoundationProject(2016121)supported by Qingdao Postdoctoral Applied Research Foundation,China
文摘Soft and medium-hard rocks are subjected to high rheology under high stress,and they are prone to a relatively large-degree of deformation when perturbed by external impacting loads.The phenomenon where rock deformation is developed due to external impacting perturbation in the rheological state is defined as the rock rheological perturbation effect.This work presents a new experimental system for investigating the rock rheological perturbation effect with experiments on medium-hard red sandstone.Results from our analysis show that red sandstone changes under two mechanical mechanisms:deformation-hardening effects at low stress states,and damage-fracture effects at high stress states when impacted by certain external impacting loads.Red sandstone tested in our experiments has a strain threshold of about 90% of the ultimate strain under the perturbation effect;the red sandstone is sensitive to a perturbed load when its actual strain exceeds the threshold.The perturbed deformation process of the rock can be divided into three phases:decline,approximately constant speed and acceleration.The rock will be rapidly destroyed when the perturbed deformation accumulates to a certain degree.The perturbation effect of rock deformation under uniaxial compression is more obvious than that under axial compression.Based on our experiment,a constitutive relation of the rock rheological perturbation effect is developed.
基金supported by the National Natural Science Foundation of China(60674018)
文摘Perturbation and robust controllability of the singular distributed parameter control system are discussed via functional analysis and the theory of GE-semigroup in Hilbert space. The perturbation principle of GE-semigroup and the sufficient condition concerning the robust controllability of the singular distributed parameter control system are obtained, in which the controllability for singular distributed parameter control system is not destroyed, if we perturb the equation by small bounded linear operator.
文摘A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.
基金supported by the National Natural Science Foundation of China(6130115561571003)+2 种基金the Ministry of Education(MCM20130111)the Funds for the Central Universities(ZYGX2014J001)the State Grid Power(W2015000333)
文摘A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is transmitted simultaneously. In order to maximize the beamforming gain, the transmitters use one bit feedback information to adjust the phase offset. It tracks the direction in which the signal strength at the receiver can increase. The directional search and perturbation theory is used to achieve the phase alignment. The feasibility of the proposed algorithm is proved both experimentally and theoretically. Simulation results show that the proposed algorithm can improve the convergent speed of the phase alignment.
基金supported by the National Natural Science Foundation of China(61171127)
文摘It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones.
基金Project (60704007) supported by the National Natural Science Foundation of China
文摘The notions of practical φ0-stability were introduced for stochastic differential equations. Sufficient conditions on such practical properties were obtained by using the comparison principle and the cone-valued Lyapunov function methods. Based on an extended comparison theorem, a perturbation theory of stochastic differential systems was given.
文摘The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.
基金Project(2001AA514013) supported by the National High Technology Research and Development Programof China
文摘The heat transfer characteristic of honeycomb ceramic regenerator was optimized by the perturbation analytical-numerical method. The results show that there is a temperature efficiency peak and the corresponding optimal switch time. The decrease of air oxygen concentration leads to the decrease of maximum temperature efficiency. Optimal switch time is directly proportional to the matrix thickness. The solid heat conduction along the flow direction and the regenerator heat storage capacity of the unit volume have no impact on maximum temperature efficiency and optimal switch time. The temperature efficiency tendency based on the semi-analysis is the same as dispersion combustion tests with low oxygen concentration, and optimal switch time of 2-4 s agrees well with that of 4 s in high-temperature gasification tests. The possibility of design, operate and control a thin-walled regenerator with high efficiency by means of the perturbation method is proved.
基金supported by the basic research projects of Army Engineering University.
文摘Strong spatial variance of the imaging parameters and serious geometric distortion of the image are induced by the acceleration and vertical velocity in a high-squint synthetic aperture radar(SAR)mounted on maneuvering platforms.In this paper,a frequency-domain imaging algorithm is proposed based on a novel slant range model and azimuth perturbation resampling.First,a novel slant range model is presented for mitigating the geometric distortion according to the equal squint angle curve on the ground surface.Second,the correction of azimuth-dependent range cell migration(RCM)is achieved by introducing a high-order time-domain perturbation function.Third,an azimuth perturbation resampling method is proposed for azimuth compression.The azimuth resampling and the time-domain perturbation are used for correcting first-order and high-order azimuthal spatial-variant components,respectively.Experimental results illustrate that the proposed algorithm can improve the focusing quality and the geometric distortion correction accuracy of the imaging scene effectively.
基金Project (50378036) supported by the National Natural Science Foundation of China
文摘The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.
文摘The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.
基金National Natural Science Foundation of China(Grant Nos.61803348,62173312,51922009)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(Grant No.201905D121001).
文摘Most researches associated with target encircling control are focused on moving along a circular orbit under an ideal environment free from external disturbances.However,elliptical encirclement with a time-varying observation radius,may permit a more flexible and high-efficacy enclosing solution,whilst the non-orthogonal property between axial and tangential speed components,non-ignorable environmental perturbations,and strict assignment requirements empower elliptical encircling control to be more challenging,and the relevant investigations are still open.Following this line,an appointed-time elliptical encircling control rule capable of reinforcing circumnavigation performances is developed to enable Unmanned Aerial Vehicles(UAVs)to move along a specified elliptical path within a predetermined reaching time.The remarkable merits of the designed strategy are that the relative distance controlling error can be guaranteed to evolve within specified regions with a designer-specified convergence behavior.Meanwhile,wind perturbations can be online counteracted based on an unknown system dynamics estimator(USDE)with only one regulating parameter and high computational efficiency.Lyapunov tool demonstrates that all involved error variables are ultimately limited,and simulations are implemented to confirm the usability of the suggested control algorithm.
基金Project(NCET-08-0038) supported by the Program for New Century Excellent Talents in Chinese UniversityProjects(70701002,70971007 and 70521001) supported by the National Natural Science Foundation of ChinaProject(2006CB705503) supported by the National Basic Research Program of China
文摘The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and small perturbation were studied.The analytical and numerical results show that widening (shrinking) road can enhance (reduce) the equilibrium speed and flow,and the increments (decrements) will increase with the absolute value of road width gradient.In addition,the numerical results illustrate that the new model can describe the effects of road width on the evolutions of uniform flow and small perturbation.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘The singularly perturbed problems for elliptic systems in a half space are con- sidered. Under suitable conditions, and by using the comparison theorem the existence and asymptotic behavior of solution for the boundary value problems are studied.
文摘The Experimental Satellite on Electromagnetism Monitoring(ESEM) was proposed in 2003 and proved in 2013 after 10-years' scientific demonstration. The ESEM mission was proposed to be the first satellite of space-based geophysical fields observation system in China with a lot of application prospects in earthquake science, geophysics, space sciences and so on. And coincide with the mission objectives, the satellite decides to use the Circular Sun Synchronous Orbit with an altitude of 507 km and descending node time at 14:00 LT. The payload assemble includes 8 instruments,Search-Coil Magnetometer, Electric Field Detector, High precision Magnetometer, GNSS occupation Receiver, Plasma Analyzer, Langmuir Probe, Energetic Particle Detector, and Three-frequency Transmitter. According to the planned schedule, the satellite is due to be launched in 2016–2017 and will be onboard operated for 5 years.
基金Project(020301)supported by the Manned Spaceflight Advanced Research,ChinaProject(14JJ3024)supported by Hunan Natural Science Foundation,China
文摘An extended-state-observer(ESO) based predictive control scheme is proposed for the autopilot of lunar landing.The slosh fuel masses exert forces and torques on the rigid body of lunar module(LM),such disturbances will dramatically undermine the stability of autopilot system.The fuel sloshing dynamics and uncertainties due to the time-varying parameters are considered as a generalized disturbance which is estimated by an ESO from the measured attitude signals and the control input signals.Then a continuous-time predictive controller driven by the estimated states and disturbances is designed to obtain the virtual control input,which is allocated to the real control actuators according to a deadband logic.The 6-DOF simulation results reveal the effectiveness of the proposed method when dealing with the fuel sloshing dynamics and parameter perturbations.
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.