Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was ...Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in fa...Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.展开更多
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi...Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the...The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.展开更多
Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on s...Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.展开更多
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit...The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.展开更多
The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow ...The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.展开更多
A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relati...A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation.展开更多
Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or ca...Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.展开更多
Although the slippage effect has been extensively studied,most of the previous studies focused on the impact of the slippage effect on apparent permeability within a low pore pressure range,resulting in the inability ...Although the slippage effect has been extensively studied,most of the previous studies focused on the impact of the slippage effect on apparent permeability within a low pore pressure range,resulting in the inability of matching the evolution of permeability in the remaining pressure range.In this paper,a new apparent permeability model that reveals the evolution of permeability under the combined action of effective stress and slippage in the full pore pressure range was proposed.In this model,both intrinsic permeability and slippage coefficient are stress dependent.Three experimental tests with pore pressure lower than 2 MPa and a test with pore pressure at about 10 MPa using cores from the same origin under constant confining stress and constant effective stress are conducted.By comparing experimental data and another apparent permeability model,we proved the fidelity of our newly developed model.Furthermore,the contribution factor of the slippage effect Rslip is used to determine the low pore pressure limit with significant slippage effect.Our results show that both narrow initial pore size and high effective stress increase the critical pore pressure.Finally,the evolutions of the slippage coefficient and the intrinsic permeability under different boundary conditions were analyzed.展开更多
As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant...As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective.展开更多
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controll...In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.展开更多
This study comprehensively characterizes the boundary values of generalized permeability jail in tight reservoirs through relative-permeability curve analysis,numerical simulation,and economic evaluation.A total numbe...This study comprehensively characterizes the boundary values of generalized permeability jail in tight reservoirs through relative-permeability curve analysis,numerical simulation,and economic evaluation.A total number of 108 relative-permeability curves of rock samples from tight reservoirs were obtained,and the characteristics of relative-permeability curves were analyzed.The irreducible water saturation(Swi)mainly ranges from 20% to 70%,and the residual gas saturation(Sgr)ranges from 5% to 15% for 55% of the samples.The relative-permeability curves are categorized into six types(Category-Ⅰ to Ⅵ)by analyzing the following characteristics:The relative permeability of gas at Swi,the relative permeability of water at Sgr,and the relative permeability corresponding to the isotonic point.The relative permeability curves were normalized to facilitate numerical simulation and evaluate the impact of different types of curves on production performance.The results of simulation show significant difference in production performance for different types of relative-permeability curves:Category-Ⅰ corresponds to the case with best well performance,whereas Categories-Ⅴ and Ⅵ correspond to the cases with least production volume.The results of economic evaluation show a generalized permeability jail for Categories-Ⅳ,Ⅴ,and Ⅵ,and the permeability jail develops when the relative permeability of gas and water is below 0.06.This study further quantifies the range of micro-pore parameters corresponding to the generalized permeability jail for a tight sandstone reservoir.展开更多
According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separati...According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
Coal permeability is a measure of the ability for fluids to flow through coal structures. It is one of the most important parameters affecting the gas drainage performance in underground coal mines. Despite the extens...Coal permeability is a measure of the ability for fluids to flow through coal structures. It is one of the most important parameters affecting the gas drainage performance in underground coal mines. Despite the extensive research conducted on coal permeability, few studies have considered the effect of coal damage on permeability. This has resulted in unreliable permeability evaluation and prediction. The aim of this study is to investigate the effect of coal damage on permeability and gas drainage performance. The Cui-Bustin permeability model was improved by taking into account the impact of coal damage on permeability. The key damage coefficient of the improved permeability model is determined based on the published permeability data. A finite-element numerical simulation was then developed based on the improved permeability model to investigate the damage areas and the permeability distribution around roadway. Results showed that the tensile failure occurs mainly on the upper and lower sides of the roadway while the shear failure symmetrically occurs on the left and right sides. With the increase in the friction angle value, the damage area becomes small. A good agreement was obtained between the results of the improved permeability model(c = 3) and the published permeability data. This indicated a more accurate permeability prediction by the improved permeability model. It is expected that the findings of this study could provide guidance for in-seam gas drainage borehole design and sealing, in order to enhance the gas drainage performance and reduce gas emissions into underground roadways.展开更多
To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (her...To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp).展开更多
基金Supported by the National Natural Science Foundation of China(52274048)Beijing Natural Science Foundation Project of China(3222037)Shaanxi Provincial Technical Innovation Project of China(2023-YD-CGZH-02).
文摘Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U2240210,52279098)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200525)the Fundamental Research Funds for the Central Universities(Grant No.B230201021).We express our gratitude to PETRONAS and Shell Global Solution International B.V.for their support of this work.
文摘Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.
基金This work has been Sponsored by CNPC Innovation Found(Grant No.2021DQ02-0202)Besides,the authors gratefully appreciate the financial support of the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH013)Financial supports from the National Natural Science Foundation of China(Grant No.52174046)is also significantly acknowledged.
文摘Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
基金the National Natural Science Foun-dation of China(Grant Nos.91963201 and 12174163)the 111 Project(Grant No.B20063).
文摘The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.
基金financially supported by the National Natural Science Foundation of China(Nos.52304265,52174216,and 52274145)the Natural Science Foundation of Jiangsu Province(No.BK20221121)the State Key Laboratory of Mining Disaster Prevention and Control(Shandong University of Science and Technology)and Ministry of Education(No.JMDPC202301)。
文摘Both bulk stress(σ_(i i))and stress path(SP)significantly affect the transportation characteristics of deep gas during reservoir pressure depletion.Therefore,the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constantσi i-constraints is performed.The results show that coal permeability is affected by horizontal stress anisotropy(σ_(H)≠σh),and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain.The slippage phenomenon is prominent in deep high-stress regime,especially in low reservoir pressure.σ_(i i)and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity(γ)of permeability.Deep reservoir implies an incremental percentage of slip-based permeability,and SP weakens the slippage effect by changing the elastic–plastic state of coal.However,γis negatively correlated with slippage effect.From the Walsh model,narrow(low aspect-ratio)fractures within the coal under unloading SP became the main channel for gas seepage,and bring the effective stress coefficient of permeability(χ)less than 1 for both low-stress elastic and high-stress damaged coal.With the raise of the effective stress,the effect of pore-lined clay particles on permeability was enhanced,inducing an increase inχfor highstress elastic coal.
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
基金supported by the National Natural Science Foundation of China(Grant No.U1262203)the National Science and Technology Special Grant(No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.14CX06070A)the Chinese Scholarship Council(No.201506450029)
文摘The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.
基金This paper was subsidized by the 15th National key Sci-Tech Project (NO.2001BA605A02-04-01)
文摘The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.
基金support from the National Key Technology R&D Program in the 11th Five-Year Plan Period (Grant No: 2008ZX05054)the Non-main Petroleum Subject Cultivating Fund of China University of Petroleum.
文摘A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation.
基金supported by the National Natural Science Foundation Project (No.40772088)the National Basic Research Program ("973" Program,Grant No. 2006CB202305)
文摘Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.
基金supported by the National Natural Science Foundation of China(No.52079077)the Natural Science Foundation of Shandong Province(No.ZR2021QE069)China Postdoctoral Science Foundation(No.2019M662402).
文摘Although the slippage effect has been extensively studied,most of the previous studies focused on the impact of the slippage effect on apparent permeability within a low pore pressure range,resulting in the inability of matching the evolution of permeability in the remaining pressure range.In this paper,a new apparent permeability model that reveals the evolution of permeability under the combined action of effective stress and slippage in the full pore pressure range was proposed.In this model,both intrinsic permeability and slippage coefficient are stress dependent.Three experimental tests with pore pressure lower than 2 MPa and a test with pore pressure at about 10 MPa using cores from the same origin under constant confining stress and constant effective stress are conducted.By comparing experimental data and another apparent permeability model,we proved the fidelity of our newly developed model.Furthermore,the contribution factor of the slippage effect Rslip is used to determine the low pore pressure limit with significant slippage effect.Our results show that both narrow initial pore size and high effective stress increase the critical pore pressure.Finally,the evolutions of the slippage coefficient and the intrinsic permeability under different boundary conditions were analyzed.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2020ME089)the National Natural Science Foundation of China(Grant No.51504275 and 5207433)for their financial supports
文摘As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective.
基金Project 50374048 supported by the National Natural Science Foundation of China
文摘In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.
基金the financial support from the National Natural Science Foundation of China(No.51774255 and 52174037).
文摘This study comprehensively characterizes the boundary values of generalized permeability jail in tight reservoirs through relative-permeability curve analysis,numerical simulation,and economic evaluation.A total number of 108 relative-permeability curves of rock samples from tight reservoirs were obtained,and the characteristics of relative-permeability curves were analyzed.The irreducible water saturation(Swi)mainly ranges from 20% to 70%,and the residual gas saturation(Sgr)ranges from 5% to 15% for 55% of the samples.The relative-permeability curves are categorized into six types(Category-Ⅰ to Ⅵ)by analyzing the following characteristics:The relative permeability of gas at Swi,the relative permeability of water at Sgr,and the relative permeability corresponding to the isotonic point.The relative permeability curves were normalized to facilitate numerical simulation and evaluate the impact of different types of curves on production performance.The results of simulation show significant difference in production performance for different types of relative-permeability curves:Category-Ⅰ corresponds to the case with best well performance,whereas Categories-Ⅴ and Ⅵ correspond to the cases with least production volume.The results of economic evaluation show a generalized permeability jail for Categories-Ⅳ,Ⅴ,and Ⅵ,and the permeability jail develops when the relative permeability of gas and water is below 0.06.This study further quantifies the range of micro-pore parameters corresponding to the generalized permeability jail for a tight sandstone reservoir.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)
文摘According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
基金financially supported by the CSC-UQ Scholarshipthe University of Queensland Top Up Assistance Scholarship
文摘Coal permeability is a measure of the ability for fluids to flow through coal structures. It is one of the most important parameters affecting the gas drainage performance in underground coal mines. Despite the extensive research conducted on coal permeability, few studies have considered the effect of coal damage on permeability. This has resulted in unreliable permeability evaluation and prediction. The aim of this study is to investigate the effect of coal damage on permeability and gas drainage performance. The Cui-Bustin permeability model was improved by taking into account the impact of coal damage on permeability. The key damage coefficient of the improved permeability model is determined based on the published permeability data. A finite-element numerical simulation was then developed based on the improved permeability model to investigate the damage areas and the permeability distribution around roadway. Results showed that the tensile failure occurs mainly on the upper and lower sides of the roadway while the shear failure symmetrically occurs on the left and right sides. With the increase in the friction angle value, the damage area becomes small. A good agreement was obtained between the results of the improved permeability model(c = 3) and the published permeability data. This indicated a more accurate permeability prediction by the improved permeability model. It is expected that the findings of this study could provide guidance for in-seam gas drainage borehole design and sealing, in order to enhance the gas drainage performance and reduce gas emissions into underground roadways.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.50774064)the Open Fund PLN0802 of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)
文摘To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp).