Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme...A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.展开更多
永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(re...永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。展开更多
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金Project (60835004) supported by the National Natural Science Foundation of China
文摘A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.
文摘永磁同步电机(permanent magnet synchronous motor,PMSM)的磁链准确辨识是实现高性能电机控制的基础。针对传统递推最小二乘(recursive least squares,RLS)法受噪声影响小但存在数据饱和,影响辨识精度和动态性问题,以及遗忘最小二乘(recursive least squares with forgetting factor,FRLS)法避免数据饱和但存在参数估计误差与动态跟踪性能矛盾的问题,文章提出一种基于折息最小二乘(recursive least squares with discount factor,DRLS)法的磁链辨识方法。该算法在FRLS法中引入加权因子构成折息因子,采用递推方法进行磁链辨识,减小参数估计误差,提高磁链辨识精度及动态跟踪能力。通过MATLAB仿真及半实物仿真试验,验证所提磁链识别方法的有效性。
文摘永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)弱磁控制系统常用于电动汽车领域。电动汽车运行于低速时,PMSM需要输出大转矩,以响应快速起步、加速及爬坡需求;电动汽车运行于高速,且超过额定速度时,PMSM处于弱磁状态,需具备一定的带载能力,以满足高速行驶和超车工况。针对PMSM弱磁控制中的转速突变,文章设计了自抗扰控制器(Active Disturbances Rejection Controller,ADRC)替代速度外环PI控制器,对扰动项快速观测和补偿,减小速度突变对系统造成干扰,实现转速精准跟踪。针对转矩项干扰,结合转矩和磁链输出值设计有限集模型预测控制(Finite Control Set Model Predictive Control,FCS-MPC)以替代传统直接转矩控制(Direct Torque Control,DTC),构建令转矩和磁链脉动最小的价值函数,再通过价值函数的计算寻优,选取出最优空间矢量控制信号输送给逆变器。基于ADRC和FCS-MPC的优化作用,弱磁控制系统的抗扰能力、电流和转矩输出精度增强,试验验证了所设计系统的可行性和性能优势。