The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt suppo...The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha...Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure...Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equ...The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equations were educed.The optimization model of McPherson suspension steering mechanism was founded by regarding the McPherson suspension and steering system as an integrated system.In order to gain the best optimization effect,a continuous weighting function was created according to the requirement of steering system performance.Taking example for TJ7136U,the optimization design of McPherson suspension steering system was conducted in this paper.展开更多
The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing...The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing the equipment optimization development with six dimensions and eight main elements is established based on the theory and method of standardization.The top-tier design space of systematic development of equipment is built up by the relations of basic models,series and model spectrums.The relations of time and space for equipment optimization development are established.The design processes of a six dimension systematic space are expounded.The connotation of each plan in the main system space is analyzed.A design method for an entire equipment is established with standardization theory.The coordinating design methods of equipment technical system and the optimization design methods of equipment integration are discussed.The design methods for universalization and serialization of components and parts are established.The design methods of equipment optimization development highlight the relations of the basic model of platform,the serialization of platform basic models,the modularization of equipment functions,the model spectrum of variant equipment,and the universalization and serialization of components and parts.展开更多
In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics an...In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.展开更多
In order to improve the survivability of the aircraft,conceptual design and radar cross section(RCS) performance research are done. The CATIA software is used to design the 3D digital model of the shipborne early wa...In order to improve the survivability of the aircraft,conceptual design and radar cross section(RCS) performance research are done. The CATIA software is used to design the 3D digital model of the shipborne early warning aircraft, and some measures are taken to reduce the RCS characteristics of the early warning aircraft at the same time. Based on the physical optics method and the equivalent electromagnetic flow method,the aircraft's RCS characteristics and strength distribution characteristics are simulated numerically, and compared with the foreign advanced shipborne early warning aircraft. The simulation results show that under the X radar band, when the incident wave pitching angle is 0?, compared with the foreign advanced shipborne early warning aircraft, the forward RCS average value of the conceptual shipborne early warning aircraft is reduced to 24.49%, the lateral RCS average value is reduced to 5.04%, and the backward RCS average value is reduced to 39.26%. The research results of this paper are expected to provide theoretical basis and technical support for the conceptual design and the stealth design of the shipborne early warning aircraft.展开更多
Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid such as water or silicone oils. The magnetorheological response of MR fluids results from the polarization induced...Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid such as water or silicone oils. The magnetorheological response of MR fluids results from the polarization induced in suspended particles by application of an external magnetic field. The interaction between the induced dipoles causes the particles to form columnar structure, parallel to the applied field. These chain-like structures restrict the motion of fluids, thereby increasing the viscosity and yield stress of the MR fluids. These mechanical characteristics allow for the construction of magnetically controlled device such as the MR fluids rotary brakes. However, there has been little information published about the design of MR fluid brakes. In this paper the design of the cylindrical MR fluid brake is investigated theoretically. Bingham model is used to characterize the constitutive behaviors of the MR fluids subject to an external magnetic field. The operational principle of the cylindrical MR fluid brake is presented. The theoretical method is developed to analyze the transmission properties of the torque of the cylindrical MR fluid brake. An engineering expression for the torque is derived to provide the theoretical foundations in the design of the cylindrical MR fluid brake. Based on this equation the volume and thickness of the annular MR fluids within the brake is expressed as functions of the desired ratio of torques with saturated magnetic field and without external field, the controlled mechanical power and the MR fluid material properties. The parameters of the thickness and width of the fluid in the brake can be calculated from the obtained equations when the required mechanical power level, the desired torque ratio are specified.展开更多
Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption ...Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.展开更多
A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morp...A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.展开更多
In order to assure quality and control process in the development of the aircraft collaborative design software, a maturity assessment model is proposed. The requirements designing—house of quality is designed to eva...In order to assure quality and control process in the development of the aircraft collaborative design software, a maturity assessment model is proposed. The requirements designing—house of quality is designed to evaluate the maturity degree of the solution, and the evaluation results can help to manage and control the development process. Furthermore, a fuzzy evaluation method based on the minimum deviation is proposed to deal with the fuzzy information. The quantitative evaluation result of the maturity degree can be calculated by optimizing the semantic discount factor aim for the minimum deviation. Finally, this model is illustrated and analyzed by an example study of the aircraft collaborative design software.展开更多
Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main pur...Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main purpose of the cutter matching design is to evaluate the cutter performance and select the appropriate cutter size.In this paper,a novel evaluation method based on multicriteria decision making(MCDM)techniques was developed to help TBM designers in the process of determining the cutter size.The analytic hierarchy process(AHP)and matter element analysis were applied to obtaining the weights of the cutter evaluation criteria,and the fuzzy comprehensive evaluation and technique for order performance by similarity to ideal solution(TOPSIS)approaches were employed to determine the ranking of the cutters.A case application was offered to illustrate and validate the proposed method.The results of the project case demonstrate that this method is reasonable and feasible for disc cutter size selection in cutter head design.展开更多
基金Project(2023YFC3805700) supported by the National Key Research and Development Program of ChinaProjects(42477166,42277174) supported by the National Natural Science Foundation of China+2 种基金Project(2024JCCXSB01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M) supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,ChinaProject(HLCX-2024-04) supported by the Open Foundation of Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources,China。
文摘The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
基金Projects(51774054,51974050)supported by the National Natural Science Foundation of China。
文摘Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
基金Project(2004G016-B) supported by the Science and Technology Development Program of Railways Department,China
文摘Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
文摘The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equations were educed.The optimization model of McPherson suspension steering mechanism was founded by regarding the McPherson suspension and steering system as an integrated system.In order to gain the best optimization effect,a continuous weighting function was created according to the requirement of steering system performance.Taking example for TJ7136U,the optimization design of McPherson suspension steering system was conducted in this paper.
文摘The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing the equipment optimization development with six dimensions and eight main elements is established based on the theory and method of standardization.The top-tier design space of systematic development of equipment is built up by the relations of basic models,series and model spectrums.The relations of time and space for equipment optimization development are established.The design processes of a six dimension systematic space are expounded.The connotation of each plan in the main system space is analyzed.A design method for an entire equipment is established with standardization theory.The coordinating design methods of equipment technical system and the optimization design methods of equipment integration are discussed.The design methods for universalization and serialization of components and parts are established.The design methods of equipment optimization development highlight the relations of the basic model of platform,the serialization of platform basic models,the modularization of equipment functions,the model spectrum of variant equipment,and the universalization and serialization of components and parts.
基金Project(2011ZA05) supported by the State Key Laboratory’s Autonomous Project of Subtropical Building Science in South China University of Technology
文摘In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.
基金supported by the National Natural Science Foundation of China(51375490)
文摘In order to improve the survivability of the aircraft,conceptual design and radar cross section(RCS) performance research are done. The CATIA software is used to design the 3D digital model of the shipborne early warning aircraft, and some measures are taken to reduce the RCS characteristics of the early warning aircraft at the same time. Based on the physical optics method and the equivalent electromagnetic flow method,the aircraft's RCS characteristics and strength distribution characteristics are simulated numerically, and compared with the foreign advanced shipborne early warning aircraft. The simulation results show that under the X radar band, when the incident wave pitching angle is 0?, compared with the foreign advanced shipborne early warning aircraft, the forward RCS average value of the conceptual shipborne early warning aircraft is reduced to 24.49%, the lateral RCS average value is reduced to 5.04%, and the backward RCS average value is reduced to 39.26%. The research results of this paper are expected to provide theoretical basis and technical support for the conceptual design and the stealth design of the shipborne early warning aircraft.
文摘Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid such as water or silicone oils. The magnetorheological response of MR fluids results from the polarization induced in suspended particles by application of an external magnetic field. The interaction between the induced dipoles causes the particles to form columnar structure, parallel to the applied field. These chain-like structures restrict the motion of fluids, thereby increasing the viscosity and yield stress of the MR fluids. These mechanical characteristics allow for the construction of magnetically controlled device such as the MR fluids rotary brakes. However, there has been little information published about the design of MR fluid brakes. In this paper the design of the cylindrical MR fluid brake is investigated theoretically. Bingham model is used to characterize the constitutive behaviors of the MR fluids subject to an external magnetic field. The operational principle of the cylindrical MR fluid brake is presented. The theoretical method is developed to analyze the transmission properties of the torque of the cylindrical MR fluid brake. An engineering expression for the torque is derived to provide the theoretical foundations in the design of the cylindrical MR fluid brake. Based on this equation the volume and thickness of the annular MR fluids within the brake is expressed as functions of the desired ratio of torques with saturated magnetic field and without external field, the controlled mechanical power and the MR fluid material properties. The parameters of the thickness and width of the fluid in the brake can be calculated from the obtained equations when the required mechanical power level, the desired torque ratio are specified.
基金supported by the National Natural Science Foundation of China(61302153)the Aeronautical Science Foundation of China(20160196001)
文摘Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.
基金Project(6369107)supported by the Ministry of Higher Education,Malaysia
文摘A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.
基金supported by the National Natural Science Foundation for Youth of China(61802174)the Natural Science Foundation for Youth of Jiangsu Province(BK20181016)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB520019)the Scientific Research Foundation of Nanjing Institute of Technology of China(YKJ201614)
文摘In order to assure quality and control process in the development of the aircraft collaborative design software, a maturity assessment model is proposed. The requirements designing—house of quality is designed to evaluate the maturity degree of the solution, and the evaluation results can help to manage and control the development process. Furthermore, a fuzzy evaluation method based on the minimum deviation is proposed to deal with the fuzzy information. The quantitative evaluation result of the maturity degree can be calculated by optimizing the semantic discount factor aim for the minimum deviation. Finally, this model is illustrated and analyzed by an example study of the aircraft collaborative design software.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2013CB035401)supported by the National Basic Research Program of China+1 种基金Project(2012AA041801)supported by the National High-tech Research and Development Program of ChinaProject(CX2014B058)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Geological adaptability matching design of a disc cutter is the prerequisite of cutter head design for tunnel boring machines(TBMs)and plays an important role in improving the tunneling efficiency of TBMs.The main purpose of the cutter matching design is to evaluate the cutter performance and select the appropriate cutter size.In this paper,a novel evaluation method based on multicriteria decision making(MCDM)techniques was developed to help TBM designers in the process of determining the cutter size.The analytic hierarchy process(AHP)and matter element analysis were applied to obtaining the weights of the cutter evaluation criteria,and the fuzzy comprehensive evaluation and technique for order performance by similarity to ideal solution(TOPSIS)approaches were employed to determine the ranking of the cutters.A case application was offered to illustrate and validate the proposed method.The results of the project case demonstrate that this method is reasonable and feasible for disc cutter size selection in cutter head design.