Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept...The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.展开更多
The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry.Developing portable and accurate imaging and depth sensing systems is cruci...The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry.Developing portable and accurate imaging and depth sensing systems is crucial for advancing next-generation virtual reality devices.This work demonstrates an intelligent,lightweight,and compact edge-enhanced depth perception system that utilizes a binocular meta-lens for spatial computing.The miniaturized system comprises a binocular meta-lens,a 532 nm filter,and a CMOS sensor.For disparity computation,we propose a stereo-matching neural network with a novel H-Module.The H-Module incorporates an attention mechanism into the Siamese network.The symmetric architecture,with cross-pixel interaction and cross-view interaction,enables a more comprehensive analysis of contextual information in stereo images.Based on spatial intensity discontinuity,the edge enhancement eliminates illposed regions in the image where ambiguous depth predictions may occur due to a lack of texture.With the assistance of deep learning,our edge-enhanced system provides prompt responses in less than 0.15 seconds.This edge-enhanced depth perception meta-lens imaging system will significantly contribute to accurate 3D scene modeling,machine vision,autonomous driving,and robotics development.展开更多
The received signals used for sparse code multiple access(SCMA)detection are usually contaminated with noise during transmission,which exposes an issue of low decoding efficiency.To address this issue,a novel detector...The received signals used for sparse code multiple access(SCMA)detection are usually contaminated with noise during transmission,which exposes an issue of low decoding efficiency.To address this issue,a novel detector based on a residual network(ResNet)perception fusion framework(RSMPA)is proposed for uplink SCMA system in this paper.Specifically,we first formulate a joint design of perception system and traditional communication module.A perception framework based on ResNet is applied to cancel the noise component and enhance the communication system performance.The ResNet model is designed and trained using the clean and noisy SCMA signal,respectively.Based on the denoised output,information iteration process is executed for multi-user detection.Simulation results indicate that the perception model achieves an excellent denoising performance for SCMA system and the proposed scheme outperforms the conventional detection algorithms in terms of SER performance.展开更多
The core drivers of the modern food industry are meeting consumer demand for tasty and healthy foods.The application of food flavor perception enhancement can help to achieve the goals of salt-and sugar-reduction,with...The core drivers of the modern food industry are meeting consumer demand for tasty and healthy foods.The application of food flavor perception enhancement can help to achieve the goals of salt-and sugar-reduction,without compromising the sensory quality of the original food,and this has attracted increasing research attention.The analysis of bibliometric results from 2002 to 2022 reveals that present flavor perception enhancement strategies(changing ingredient formulations,adding salt/sugar substitutes,emulsion delivery systems)are mainly carry out based on sweetness,saltiness and umami.Emulsion systems is becoming a novel research foci and development trends of international food flavor perception-enhancement research.The structured design of food emulsions,by using interface engineering technology,can effectively control,or enhance the release of flavor substances.Thus,this review systematically summarizes strategies,the application of emulsion systems and the mechanisms of action of food flavor perception-enhancement technologies,based on odor-taste cross-modal interaction(OTCMI),to provide insights into the further structural design and application of emulsion systems in this field.展开更多
Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failu...Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.展开更多
Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing ...Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.展开更多
Objectives This study aim to evaluate patient’s perception about anesthesiologists’ job roles and investigate their expectations for anesthesia care.Methods We designed a self-administered questionnaire for this cro...Objectives This study aim to evaluate patient’s perception about anesthesiologists’ job roles and investigate their expectations for anesthesia care.Methods We designed a self-administered questionnaire for this cross-sectional survey study and delivered questionnaire forms to adult in-patients who were scheduled for elective surgery before pre-operative anesthetic visit the day before surgery.We collected information of respondents’ demographic data,education background,health literacy and previous experience of anesthesia,perception of anesthesiologist’s job,the expectation on anesthesia care.Descriptive analyses,χ^2 test and multiple linear regression analysis were used for data analysis.Results Of 550 participants,521(94.7%)completed the questionnaire.In these respondents,335 (64.3%) considered anesthesiology as an independent medical discipline,225 (43.2%) believed that anesthesiology department was an independent clinical department,and 243 (46.6%) recognized anesthesiologists as qualified doctors.Only 21.5% of them knew that anesthesiologists also work in the intensive care unit and 26.9% of them knew that anesthesiologists also work in pain clinic as well.Younger patients (β=-0.044,P<0.001),those with higher education (β=1.200,P<0.001),or with better health literacy (β=0.781,P=0.005) had significant more knowledge about the job roles of anesthesiologists.Most patients demanded pre-anesthetic visit (80.5%),expected availability of preoperative anesthetic clinic (74.1%),wished to receive more information about anesthesia (91.3%) and anesthesiologist (77.4%).Conclusions Patients’ perception about anesthesiologists might be limited.Efforts should be made on education about anesthesia,especially for elderly patients and those under-educated patients.Preoperative anesthetic clinic is expected by most in-patients.展开更多
To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimu...To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimuli were displayed on a color monitor and the perceived color shifts of test targets induced by its surrounds were measured using binocular matching method while systematically varying hue difference between target and surround. When the hue difference increased, the magnitude of color shift in test target decreased, but the deflection angle of color shift vector from constant hue line increased. Regression analyses of experimental data indicated that the relationship between hue angle difference and the magnitude of perceived color shifts could be described quantitatively by an exponential function, and a linear function could describe quantitative relationship between hue angle difference and deflection angle of color shift vector from constant hue line.展开更多
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s...The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.展开更多
The paper explores the prospect of introducing language, perception, culture and communication. Starting with some definitions of language, perception, culture and communication, the paper argues for the internal conn...The paper explores the prospect of introducing language, perception, culture and communication. Starting with some definitions of language, perception, culture and communication, the paper argues for the internal connection among them. It provides better understanding of these factors in foreign language learning and encourages learners to achieve the better learning result to communicate effectively through language, culture etc.展开更多
This article analyzes the influence of EIL and changes in perceptions and attitudes towards Chinese college English teaching. It further urges educators that they should redefine their roles through the perspective of...This article analyzes the influence of EIL and changes in perceptions and attitudes towards Chinese college English teaching. It further urges educators that they should redefine their roles through the perspective of intercultural education and cul tivate a critical thinking to keep a balance between the target culture and local culture.展开更多
The ability to comprehend academic lecture is an important part of the necessary proficiency of tertiary level students for whom English is a second or foreign language. The purpose of this research is to investigate ...The ability to comprehend academic lecture is an important part of the necessary proficiency of tertiary level students for whom English is a second or foreign language. The purpose of this research is to investigate the lecture-perceived experience of one non-nativespeaking learner who attending her English medium lecture course in the first semester in New Zealand. It describes how the learner perceives the lecturing experience, the problems she encounters and the strategies she use to overcome these problems.展开更多
This paper aims at examining the perception of English tense and lax vowel contrasts by testing an identification task of CVC syllables with different manipulated durations in Chinese learners of English.This can prov...This paper aims at examining the perception of English tense and lax vowel contrasts by testing an identification task of CVC syllables with different manipulated durations in Chinese learners of English.This can provide some empirical evidence for English as a second language teachers in teaching second language pronunciation.展开更多
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or...The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.展开更多
It is argued that research on eye movements has now entered a fourth general era. Each of the four eras is briefly reviewed, and research findings related to eye movements during reading, scene perception, and visual ...It is argued that research on eye movements has now entered a fourth general era. Each of the four eras is briefly reviewed, and research findings related to eye movements during reading, scene perception, and visual search are discussed. Future directions for research in each of these areas and research in other domains involving eye movements are also discussed.展开更多
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金supported by National Natural Science Foundation of China(No.51902250).
文摘The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
基金supports from the Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.C5031-22GCityU11310522+3 种基金CityU11300123]the Department of Science and Technology of Guangdong Province[Project No.2020B1515120073]City University of Hong Kong[Project No.9610628]JST CREST(Grant No.JPMJCR1904).
文摘The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry.Developing portable and accurate imaging and depth sensing systems is crucial for advancing next-generation virtual reality devices.This work demonstrates an intelligent,lightweight,and compact edge-enhanced depth perception system that utilizes a binocular meta-lens for spatial computing.The miniaturized system comprises a binocular meta-lens,a 532 nm filter,and a CMOS sensor.For disparity computation,we propose a stereo-matching neural network with a novel H-Module.The H-Module incorporates an attention mechanism into the Siamese network.The symmetric architecture,with cross-pixel interaction and cross-view interaction,enables a more comprehensive analysis of contextual information in stereo images.Based on spatial intensity discontinuity,the edge enhancement eliminates illposed regions in the image where ambiguous depth predictions may occur due to a lack of texture.With the assistance of deep learning,our edge-enhanced system provides prompt responses in less than 0.15 seconds.This edge-enhanced depth perception meta-lens imaging system will significantly contribute to accurate 3D scene modeling,machine vision,autonomous driving,and robotics development.
基金This work was supported by China Postdoctoral Science Foundation(2021M702987)the Fundamental Research Funds for the Central Universities(CUC210B032).
文摘The received signals used for sparse code multiple access(SCMA)detection are usually contaminated with noise during transmission,which exposes an issue of low decoding efficiency.To address this issue,a novel detector based on a residual network(ResNet)perception fusion framework(RSMPA)is proposed for uplink SCMA system in this paper.Specifically,we first formulate a joint design of perception system and traditional communication module.A perception framework based on ResNet is applied to cancel the noise component and enhance the communication system performance.The ResNet model is designed and trained using the clean and noisy SCMA signal,respectively.Based on the denoised output,information iteration process is executed for multi-user detection.Simulation results indicate that the perception model achieves an excellent denoising performance for SCMA system and the proposed scheme outperforms the conventional detection algorithms in terms of SER performance.
基金supported by the National Key R&D Program of China(2022YFD2101305).
文摘The core drivers of the modern food industry are meeting consumer demand for tasty and healthy foods.The application of food flavor perception enhancement can help to achieve the goals of salt-and sugar-reduction,without compromising the sensory quality of the original food,and this has attracted increasing research attention.The analysis of bibliometric results from 2002 to 2022 reveals that present flavor perception enhancement strategies(changing ingredient formulations,adding salt/sugar substitutes,emulsion delivery systems)are mainly carry out based on sweetness,saltiness and umami.Emulsion systems is becoming a novel research foci and development trends of international food flavor perception-enhancement research.The structured design of food emulsions,by using interface engineering technology,can effectively control,or enhance the release of flavor substances.Thus,this review systematically summarizes strategies,the application of emulsion systems and the mechanisms of action of food flavor perception-enhancement technologies,based on odor-taste cross-modal interaction(OTCMI),to provide insights into the further structural design and application of emulsion systems in this field.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000.
文摘Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.
基金supports from the National Natural Science Foundation of China(Grant Nos.62288101,and 61971134)National Key Research and Development Program of China(Grant Nos.2021YFB3200502,and 2017YFA0700200)+2 种基金the Major Project of the Natural Science Foundation of Jiangsu Province(Grant No.BK20212002)the Fundamental Research Funds for Central Universities(Grant No.2242021R41078)the 111 Project(Grant No.111-2-05).
文摘Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.
文摘Objectives This study aim to evaluate patient’s perception about anesthesiologists’ job roles and investigate their expectations for anesthesia care.Methods We designed a self-administered questionnaire for this cross-sectional survey study and delivered questionnaire forms to adult in-patients who were scheduled for elective surgery before pre-operative anesthetic visit the day before surgery.We collected information of respondents’ demographic data,education background,health literacy and previous experience of anesthesia,perception of anesthesiologist’s job,the expectation on anesthesia care.Descriptive analyses,χ^2 test and multiple linear regression analysis were used for data analysis.Results Of 550 participants,521(94.7%)completed the questionnaire.In these respondents,335 (64.3%) considered anesthesiology as an independent medical discipline,225 (43.2%) believed that anesthesiology department was an independent clinical department,and 243 (46.6%) recognized anesthesiologists as qualified doctors.Only 21.5% of them knew that anesthesiologists also work in the intensive care unit and 26.9% of them knew that anesthesiologists also work in pain clinic as well.Younger patients (β=-0.044,P<0.001),those with higher education (β=1.200,P<0.001),or with better health literacy (β=0.781,P=0.005) had significant more knowledge about the job roles of anesthesiologists.Most patients demanded pre-anesthetic visit (80.5%),expected availability of preoperative anesthetic clinic (74.1%),wished to receive more information about anesthesia (91.3%) and anesthesiologist (77.4%).Conclusions Patients’ perception about anesthesiologists might be limited.Efforts should be made on education about anesthesia,especially for elderly patients and those under-educated patients.Preoperative anesthetic clinic is expected by most in-patients.
文摘To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimuli were displayed on a color monitor and the perceived color shifts of test targets induced by its surrounds were measured using binocular matching method while systematically varying hue difference between target and surround. When the hue difference increased, the magnitude of color shift in test target decreased, but the deflection angle of color shift vector from constant hue line increased. Regression analyses of experimental data indicated that the relationship between hue angle difference and the magnitude of perceived color shifts could be described quantitatively by an exponential function, and a linear function could describe quantitative relationship between hue angle difference and deflection angle of color shift vector from constant hue line.
基金supported by the National Natural Science Foundation of China(No.52174021)Key Research and Develop-ment Project of Hainan Province(No.ZDYF2022GXJS 003).
文摘The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.
文摘The paper explores the prospect of introducing language, perception, culture and communication. Starting with some definitions of language, perception, culture and communication, the paper argues for the internal connection among them. It provides better understanding of these factors in foreign language learning and encourages learners to achieve the better learning result to communicate effectively through language, culture etc.
文摘This article analyzes the influence of EIL and changes in perceptions and attitudes towards Chinese college English teaching. It further urges educators that they should redefine their roles through the perspective of intercultural education and cul tivate a critical thinking to keep a balance between the target culture and local culture.
文摘The ability to comprehend academic lecture is an important part of the necessary proficiency of tertiary level students for whom English is a second or foreign language. The purpose of this research is to investigate the lecture-perceived experience of one non-nativespeaking learner who attending her English medium lecture course in the first semester in New Zealand. It describes how the learner perceives the lecturing experience, the problems she encounters and the strategies she use to overcome these problems.
文摘This paper aims at examining the perception of English tense and lax vowel contrasts by testing an identification task of CVC syllables with different manipulated durations in Chinese learners of English.This can provide some empirical evidence for English as a second language teachers in teaching second language pronunciation.
基金supported by the NSFC(51925306 and 21774130)National Key R&D Program of China(2018FYA 0305800)+2 种基金Key Research Program of the Chinese Academy of Sciences(XDPB08-2)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)University of Chinese Academy of Sciences.
文摘The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels.
文摘It is argued that research on eye movements has now entered a fourth general era. Each of the four eras is briefly reviewed, and research findings related to eye movements during reading, scene perception, and visual search are discussed. Future directions for research in each of these areas and research in other domains involving eye movements are also discussed.