期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A supramolecular self-assembly material based on cucurbituril and cationic TPE as ultra-sensitive probe of energetic pentazolate salts
1
作者 Boan Tang Jingxiang Zhong +3 位作者 Shutao Wang Shiyu Zhou Yongxing Tang Wei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期69-76,共8页
The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion ... The successful synthesis of the pentazolate anion(cyclo-N-5)has been a great breakthrough in the field of energetic materials.However,the detection methods for these energetic materials based on the pentazolate anion are quite rare.Herein,two fluorescent probes for cyclo-N-5anion were designed.Sensor 1(TPE2N)was synthesized with a tetraphenylethylene functionalized by two cationic groups which can generate strong electrostatic interactions with pentazolate anion and result in specific fluorescent changes.Sensor 2 was designed based on sensor 1 and supramolecular cucurbit[7]uril(CB[7]).The unique structural features of CB[7]provide sites for the interaction between the cations and N-5anion in its cavity,which would generate a platform for the detection and enhance the recognition performance.Isothermal titration calorimetry(ITC)experiment and fluorescence titration experiment indicate the binding molar ratio between sensor 1 with CB[7]is 1:2.Both sensors display typical aggregation-induced emission(AIE)features and good water-solubility.The sensors demonstrate excellent sensitivity to pentazole hydrazine salt with high enhancement constant(sensor 1:1.34×10^(6);sensor 2:3.78×10^(6))and low limit of detection(LOD:sensor 1=4.33μM;sensor 2=1.54μM).The formation of an AIE-based supramolecular sensor effectively improves the sensitivity to N-5anion.In addition,the probes also have good selectivity of N-5anion salts.The research would shed some light on the design of novel fluorescent sensors to detect pentazolate-based molecules and provides an example of supramolecular chemistry combined with fluorescent probes. 展开更多
关键词 Pentazolate anion Explosives detection Aggregation-induced emission(AIE) Host-guest interaction
在线阅读 下载PDF
Structure design and property adjustment of new cage rich-nitrogen pentazolyltetraazacubanes as potential high energy density compounds
2
作者 Qiong Wu Gao-jie Yan +1 位作者 Ze-wu Zhang Wei-hua Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期705-711,共7页
In this study,based on two attractive energetic compounds pentazole(PZ) and tetraazacubane(TAC),a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed.Then,a different number o... In this study,based on two attractive energetic compounds pentazole(PZ) and tetraazacubane(TAC),a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed.Then,a different number of NH2 or NO2 groups were introduced into the system to further adjust the property.The structures,properties,and the structure-property relationship of designed molecules were investigated theoretically.The results showed that all nine designed compounds have extremely high heat of formation(HOF,1226-2734 kJ/mol),good density(1,73-1.88 g/cm3),high detonation velocity(8.30-9.35 km/s),high detonation pressure(29.8-39.7 GPa) and acceptable sensitivity(△V:41-87 A3).These properties could be effectively positive adjusted by replacing one or two PZ rings by NH2 or/and NO2 groups,especially for the energy and sensitivity performance,which were increased and decreased obviously,respectively.As a result,two designed pentazolyltetraazacubanes were predicted to have higher energy and lower sensitivity than the famous high energy compound in use 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane,while two others have better co mbination property than 1,3,5-Trinitro-1,3,5-triazacyclohexane.In all,four new pentazolyltetraazacubanes with good combination performance were successfully designed by combining PZ with TAC,and the further property adjustment strategy of introducing a suitable amount of NH2/NO2 groups into the system.This work may help develop new cage energetic compounds. 展开更多
关键词 pentazole CUBANE High-nitrogen HIGH-ENERGY HEDCs
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部