In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific re...In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.展开更多
Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure o...Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure of the accommodation of large-scale hydropower in China. The East China Grid(ECG) is the main hydropower receiver of the west–east power transmission channel in China. Moreover, it has been subject to a rapidly increasing rate of hydropower integration over the past decade. Currently, large-scale outer hydropower is one of the primary ECG power sources. However, the integration of rapidly increasing outer hydropower into the power grid is subject to a series of severe drawbacks. Therefore, this study considered the load demands and hydropower transmission characteristics for the analysis of several major problems and the determination of appropriate solutions. The power supply-demand balance problem, hydropower transmission schedule problem, and peakshaving problem were considered in this study. Correspondingly, three solutions are suggested in this paper, which include coordination between the outer hydropower and local power sources, an inter-provincial power complementary operation, and the introduction of a market mechanism. The findings of this study can serve as a basis to ensure that the ECG effectively receives an increased amount of outer hydropower in the future.展开更多
Internal effects of the dynamic behaviors and nonlinear characteristics of a coupled fractional order hydropower generation system(HGS) are analyzed. A mathematical model of hydro-turbine governing system(HTGS) with r...Internal effects of the dynamic behaviors and nonlinear characteristics of a coupled fractional order hydropower generation system(HGS) are analyzed. A mathematical model of hydro-turbine governing system(HTGS) with rigid water hammer and hydro-turbine generator unit(HTGU) with fractional order damping forces are proposed. Based on Lagrange equations, a coupled fractional order HGS is established. Considering the dynamic transfer coefficient eis variational during the operation, introduced e as a periodic excitation into the HGS. The internal relationship of the dynamic behaviors between HTGS and HTGU is analyzed under different parameter values and fractional order. The results show obvious fast–slow dynamic behaviors in the HGS, causing corresponding vibration of the system, and some remarkable evolution phenomena take place with the changing of the periodic excitation parameter values.展开更多
With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite comm...With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite communication provides a large coverage area suitable for a variety of services and is less affected by geographical factors;moreover,the costs are independent of the communication distance.This study investigates information acquisition technology for small hydropower stations in remote areas using high-and low-orbit satellites.The information collection needs of small hydropower stations in remote areas are analyzed,and an information acquisition system is designed using high-and low-orbit satellites.For network security protection,network anomaly detection technology based on a support vector machine algorithm is proposed.The effectiveness of information collection was evaluated and verified for small hydropower plants in remote areas.The system provides technical support for“full coverage,full collection,and full monitoring”of the measurement automation information acquisition system.展开更多
There have been few studies on the hydropower exploitation plan for sections beyond the Inga hydropower project(HPP)in the lower reaches of the Congo River.Based on topographic and hydrological data of the basin,the e...There have been few studies on the hydropower exploitation plan for sections beyond the Inga hydropower project(HPP)in the lower reaches of the Congo River.Based on topographic and hydrological data of the basin,the exploitation plan for the lower reaches of the Congo River is herein studied.The preliminary proposal involves exploitation using three-cascade hydropower stations.The Grand Inga HPP is the core of the mega hydropower base.The full supply level(FSL)of the reservoir,installed capacity,and regulation performance of the Grand Inga HPP are studied in detail.The main advantages and disadvantages of the high and low dam schemes of the Grand Inga Hydropower Project are compared,in addition to their effects on the overall development of the hydropower base.Moreover,the installed capacity is optimized based on the load characteristics.Based on simulation of cascade hydropower operation and comprehensive analysis,the project scale and implementation sequence is proposed.The influence of hydropower on socio-economic development,energy supply,and emission reduction is analyzed.Finally,the optimal exploitation scheme of the mega hydropower base for the lower reaches of the Congo River is proposed.展开更多
The vibration protection strategy of large rotating machinery in thermal power and petroleum industry hasbeen applied for many years, but it still develops without breakthrough in hydropower unit operation due to thec...The vibration protection strategy of large rotating machinery in thermal power and petroleum industry hasbeen applied for many years, but it still develops without breakthrough in hydropower unit operation due to thecomplication of its operation and vibration. According to this situation, the vibration protection strategy is proposedbased on the analysis of unit vibration mechanism. The vibration protection strategywith two functions of timelyprotection and fault diagnosis are of great engineering application value.展开更多
文摘In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.
基金supported by the National Natural Science Foundation of China [No.51579029]Fundamental Research Funds for the Central Universities (No. DUT19JC43)
文摘Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure of the accommodation of large-scale hydropower in China. The East China Grid(ECG) is the main hydropower receiver of the west–east power transmission channel in China. Moreover, it has been subject to a rapidly increasing rate of hydropower integration over the past decade. Currently, large-scale outer hydropower is one of the primary ECG power sources. However, the integration of rapidly increasing outer hydropower into the power grid is subject to a series of severe drawbacks. Therefore, this study considered the load demands and hydropower transmission characteristics for the analysis of several major problems and the determination of appropriate solutions. The power supply-demand balance problem, hydropower transmission schedule problem, and peakshaving problem were considered in this study. Correspondingly, three solutions are suggested in this paper, which include coordination between the outer hydropower and local power sources, an inter-provincial power complementary operation, and the introduction of a market mechanism. The findings of this study can serve as a basis to ensure that the ECG effectively receives an increased amount of outer hydropower in the future.
基金Project supported by the National Natural Science Foundation of China for Outstanding Youth(Grant No.51622906)the National Natural Science Foundation of China(Grant No.51479173)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.201304030577)the Scientific Research Funds of Northwest A&F University(Grant No.2013BSJJ095)the Science Fund for Excellent Young Scholars from Northwest A&F University and Shaanxi Nova Program,China(Grant No.2016KJXX-55)
文摘Internal effects of the dynamic behaviors and nonlinear characteristics of a coupled fractional order hydropower generation system(HGS) are analyzed. A mathematical model of hydro-turbine governing system(HTGS) with rigid water hammer and hydro-turbine generator unit(HTGU) with fractional order damping forces are proposed. Based on Lagrange equations, a coupled fractional order HGS is established. Considering the dynamic transfer coefficient eis variational during the operation, introduced e as a periodic excitation into the HGS. The internal relationship of the dynamic behaviors between HTGS and HTGU is analyzed under different parameter values and fractional order. The results show obvious fast–slow dynamic behaviors in the HGS, causing corresponding vibration of the system, and some remarkable evolution phenomena take place with the changing of the periodic excitation parameter values.
基金funded by the Guangdong Power Grid Co.,Ltd.Technology Project(GDKJXM20180019).
文摘With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite communication provides a large coverage area suitable for a variety of services and is less affected by geographical factors;moreover,the costs are independent of the communication distance.This study investigates information acquisition technology for small hydropower stations in remote areas using high-and low-orbit satellites.The information collection needs of small hydropower stations in remote areas are analyzed,and an information acquisition system is designed using high-and low-orbit satellites.For network security protection,network anomaly detection technology based on a support vector machine algorithm is proposed.The effectiveness of information collection was evaluated and verified for small hydropower plants in remote areas.The system provides technical support for“full coverage,full collection,and full monitoring”of the measurement automation information acquisition system.
基金supported by the State Grid Corporation of China Science and Technology Project(Title:Study on Method and Evaluation Principle for the Cross-Continent Power Transmission Planning)。
文摘There have been few studies on the hydropower exploitation plan for sections beyond the Inga hydropower project(HPP)in the lower reaches of the Congo River.Based on topographic and hydrological data of the basin,the exploitation plan for the lower reaches of the Congo River is herein studied.The preliminary proposal involves exploitation using three-cascade hydropower stations.The Grand Inga HPP is the core of the mega hydropower base.The full supply level(FSL)of the reservoir,installed capacity,and regulation performance of the Grand Inga HPP are studied in detail.The main advantages and disadvantages of the high and low dam schemes of the Grand Inga Hydropower Project are compared,in addition to their effects on the overall development of the hydropower base.Moreover,the installed capacity is optimized based on the load characteristics.Based on simulation of cascade hydropower operation and comprehensive analysis,the project scale and implementation sequence is proposed.The influence of hydropower on socio-economic development,energy supply,and emission reduction is analyzed.Finally,the optimal exploitation scheme of the mega hydropower base for the lower reaches of the Congo River is proposed.
文摘The vibration protection strategy of large rotating machinery in thermal power and petroleum industry hasbeen applied for many years, but it still develops without breakthrough in hydropower unit operation due to thecomplication of its operation and vibration. According to this situation, the vibration protection strategy is proposedbased on the analysis of unit vibration mechanism. The vibration protection strategywith two functions of timelyprotection and fault diagnosis are of great engineering application value.