Complex conditional statement is one of the bad code smells, which affects the quality of the code and design of software. In the proposed approach, two commonly-used design patterns for handling complex conditional s...Complex conditional statement is one of the bad code smells, which affects the quality of the code and design of software. In the proposed approach, two commonly-used design patterns for handling complex conditional statements are selected, and they are the factory method pattern and the strategy pattem. Two pattern-directed refactoring approaches based on the two design patterns are proposed. Each approach contains a refactoring opportunities identification algorithm and an automated refactoring algorithm. After parsing the abstract syntax tree generated from source code, the refactoring opportunities are identified effectively and automatically. Then, for candidate code, refactoring algorithms are executed automatically, which are used to simplify or remove complex conditional statements. By empirical analysis and quality assessment, the code after refactoring has better maintainability and extensibility, and the proposed approach for automated pattern-directed refactoring succeeds to reduce code size and complexity of classes.展开更多
In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to dete...In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to detect complex and duplicated many-to-many association relationships in source code,and to provide guidance for further refactoring.In the approach,source code is first transformed to an abstract syntax tree from which all data members of each class are extracted,then each class is characterized in connection with a set of association classes saving its data members.Next,classes in common associations are obtained by comparing different association classes sets in integrated analysis.Finally,on condition of pre-defined thresholds,all class sets in candidate for refactoring and their common association classes are saved and exported.This approach is tested on 4 projects.The results show that the precision is over 96%when the threshold is 3,and 100%when the threshold is 4.Meanwhile,this approach has good execution efficiency as the execution time taken for a project with more than 500 classes is less than 4 s,which also indicates that it can be applied to projects of different scales to identify their refactoring opportunities effectively.展开更多
文摘Complex conditional statement is one of the bad code smells, which affects the quality of the code and design of software. In the proposed approach, two commonly-used design patterns for handling complex conditional statements are selected, and they are the factory method pattern and the strategy pattem. Two pattern-directed refactoring approaches based on the two design patterns are proposed. Each approach contains a refactoring opportunities identification algorithm and an automated refactoring algorithm. After parsing the abstract syntax tree generated from source code, the refactoring opportunities are identified effectively and automatically. Then, for candidate code, refactoring algorithms are executed automatically, which are used to simplify or remove complex conditional statements. By empirical analysis and quality assessment, the code after refactoring has better maintainability and extensibility, and the proposed approach for automated pattern-directed refactoring succeeds to reduce code size and complexity of classes.
文摘In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to detect complex and duplicated many-to-many association relationships in source code,and to provide guidance for further refactoring.In the approach,source code is first transformed to an abstract syntax tree from which all data members of each class are extracted,then each class is characterized in connection with a set of association classes saving its data members.Next,classes in common associations are obtained by comparing different association classes sets in integrated analysis.Finally,on condition of pre-defined thresholds,all class sets in candidate for refactoring and their common association classes are saved and exported.This approach is tested on 4 projects.The results show that the precision is over 96%when the threshold is 3,and 100%when the threshold is 4.Meanwhile,this approach has good execution efficiency as the execution time taken for a project with more than 500 classes is less than 4 s,which also indicates that it can be applied to projects of different scales to identify their refactoring opportunities effectively.