期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
Quintic spline smooth semi-supervised support vector classification machine 被引量:1
1
作者 Xiaodan Zhang Jinggai Ma +1 位作者 Aihua Li Ang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期626-632,共7页
A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machin... A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient. 展开更多
关键词 SEMI-SUPERVISED support vector classification machine SMOOTH quintic spline function convergence.
在线阅读 下载PDF
Hooke and Jeeves algorithm for linear support vector machine 被引量:1
2
作者 Yeqing Liu Sanyang Liu Mingtao Gu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期138-141,共4页
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while... Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification. 展开更多
关键词 support vector machine classification pattern search Hooke and Jeeves coordinate descent global Newton algorithm.
在线阅读 下载PDF
Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain 被引量:1
3
作者 Han-shan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期273-283,共11页
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization... In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm. 展开更多
关键词 Six sky-screens intersection test system pattern recognition Particle swarm optimization support vector machine PROJECTILE
在线阅读 下载PDF
Progressive transductive learning pattern classification via single sphere
4
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning classification support vector machine support vector domain description.
在线阅读 下载PDF
基于自适应反馈机制的小差异化图像纹理特征信息数据检索
5
作者 刘洋 毛克明 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期73-81,共9页
针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支... 针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支持向量机训练图像属性参数分类图像属性,进一步归纳图像类别.运用跳跃连接方法传输图像数据,将数据引入卷积神经网络剔除图像噪声.将中心点像素值当作反馈因子,创建自适应反馈判定条件,利用局部二值模式实现小差异化图像纹理特征挖掘.在MATLAB平台进行试验,从卷积神经网络收敛性、图像频谱纹理单元数、平均准确率、图像数据匹配度等方面进行了分析,分析结果表明:随着迭代次数不断增加,精度损失逐渐降低,基本收敛到稳定值,达到了预期训练效果;所提出方法挖掘的图像频谱纹理单元数3800个以上,更贴合人眼视觉信息;平均准确率为0.87,准确率@1、准确率@5和准确率@10的平均值分别为0.90、0.84和0.85;挖掘耗时低于5 s,图像数据匹配度高于90.3%,验证了所提出方法可在图像纹理特征识别操作中发挥应有作用. 展开更多
关键词 小差异化图像 纹理特征 数据挖掘 自适应反馈 属性分类 跳跃连接 局部二值模式 支持向量机
在线阅读 下载PDF
基于多分类高斯SVM的光纤信号的模式识别方法
6
作者 吴明埝 沈一春 +5 位作者 陈青青 王道根 李松林 谢书鸿 尹建华 徐拥军 《激光技术》 北大核心 2025年第1期128-134,共7页
为了有效提升光纤信号识别精度,采用了一种基于多分类的高斯支持向量机(SVM)的信号事件类型判别方法,先通过汉宁窗卷积的方法以及95%能量的原则来识别事件发生始末段信息,再从时域、频域以及尺度域等角度出发,对归一化后的多种特征参数... 为了有效提升光纤信号识别精度,采用了一种基于多分类的高斯支持向量机(SVM)的信号事件类型判别方法,先通过汉宁窗卷积的方法以及95%能量的原则来识别事件发生始末段信息,再从时域、频域以及尺度域等角度出发,对归一化后的多种特征参数的均值与离散性进行分析,并选取合适的主要特征参数,最后采用基于多分类高斯SVM算法对3组不同事件类型进行了分类识别,通过理论分析和实验验证,取得了不同类型光纤事件信号的数据。结果表明,对30组实验数据的事件类型进行模式识别,正确率在96%以上。该方法流程满足了光纤传感的事件信号高精度识别要求,对光纤传感器应用具有较重要的参考价值。 展开更多
关键词 传感器技术 多分类高斯支持向量机 模式识别 事件信号
在线阅读 下载PDF
基于KPCA-ISSA-SVM的控制图模式识别
7
作者 梁旭 张朝阳 +1 位作者 吉卫喜 张文博 《组合机床与自动化加工技术》 北大核心 2025年第7期128-134,140,共8页
针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)... 针对制造企业产品生产过程中质量监控智能化程度不足的问题,提出一种基于核主成分分析法(KPCA)与改进麻雀搜索算法(ISSA)优化支持向量机(SVM)的控制图模式识别方法。首先通过KPCA对控制图原始数据进行降维;其次,引入Logistic-Tent(LT)复合映射和高斯变异来改进麻雀搜索算法对SVM的关键参数进行寻优;接着建立KPCA-ISSA-SVM模型对控制图模式进行识别;最后通过仿真实验,将所提模型与RF、CNN、SVM、KPCA-SVM、KPCA-SSA-SVM、KPCA-PSO-SVM模型进行对比,并以某电梯零部件企业的机加工车间为例,验证了该方法的可行性和有效性。仿真与实例结果表明,所提方法是一种更有效的控制图模式识别方法。 展开更多
关键词 控制图 模式识别 核主成分分析 改进麻雀搜索算法 支持向量机
在线阅读 下载PDF
Modulation recognition of communication signals based on SCHKS-SSVM 被引量:5
8
作者 Xiaolin Zhang Jian Chen Zhiguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期627-633,共7页
A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters i... A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB. 展开更多
关键词 communication signal modulation recognition support vector machine smooth function
在线阅读 下载PDF
基于HHT的绝缘子泄漏电流分析及放电状态分类识别 被引量:4
9
作者 方春华 陶玉宁 +3 位作者 吴田 普子恒 丁璨 黎鹏 《高压电器》 CAS CSCD 北大核心 2024年第1期25-32,共8页
泄漏电流是污秽绝缘子在线监测参数,能动态地反映绝缘子表面的放电状态。文中开展了瓷绝缘子人工污秽放电试验,利用Hilbert-Huang变换分析了不同污闪阶段的泄漏电流固有模态函数分量、Hilbert边际谱与时频熵,从时频域及波形细节提取了1... 泄漏电流是污秽绝缘子在线监测参数,能动态地反映绝缘子表面的放电状态。文中开展了瓷绝缘子人工污秽放电试验,利用Hilbert-Huang变换分析了不同污闪阶段的泄漏电流固有模态函数分量、Hilbert边际谱与时频熵,从时频域及波形细节提取了15个特征量,使用主成分分析法与最小二乘支持向量机分类器对污秽放电状态进行识别。结果表明:起始放电阶段与闪络阶段的泄漏电流固有模态函数分量较多;泄漏电流的Hilbert边际谱上频率主要分布在0~150 Hz、200~250 Hz范围内;闪络前泄漏电流的时频熵值总是大于闪络后的;当训练样本数为测试样本数5倍及以上时,分类器的综合评判准确率可达99%,准确实现了污秽放电状态的分类识别。文中研究结果可为建立绝缘子污闪预警系统提供依据。 展开更多
关键词 绝缘子 泄漏电流 HILBERT-HUANG变换 主成分分析法 最小二乘支持向量机 分类识别
在线阅读 下载PDF
基于黎曼普鲁克的手部离散动作识别方法 被引量:1
10
作者 王志恒 沈家和 +1 位作者 都明宇 杨庆华 《高技术通讯》 CAS 北大核心 2024年第8期854-863,共10页
肌电信号能反映人体的运动意图,是外骨骼和假肢控制的主要信号之一。但受试者间的差异,增加了基于表面肌电信号(sEMG)的手部离散动作识别使用成本。针对这一情况,本文从域适应的角度出发,提出一种基于小型调整集的迁移学习建模方法。该... 肌电信号能反映人体的运动意图,是外骨骼和假肢控制的主要信号之一。但受试者间的差异,增加了基于表面肌电信号(sEMG)的手部离散动作识别使用成本。针对这一情况,本文从域适应的角度出发,提出一种基于小型调整集的迁移学习建模方法。该方法利用黎曼普鲁克分析(RPA)提取黎曼特征与传统时域特征作为支持向量机(SVM)的输入特征,并通过实验验证了其识别精度。在10名受试者身上进行了实验,在黎曼特征下黎曼普鲁克分析相比于不进行迁移学习的动作识别方法提高了5%~7%的准确率。在特征空间分布上,黎曼普鲁克分析后的黎曼特征的重合度更高。结果表明,该方法在基于肌电信号的手部离散动作识别上有明显优势。 展开更多
关键词 表面肌电信号(sEMG) 黎曼普鲁克分析(RPA) 手势识别 支持向量机(SVM) 迁移学习
在线阅读 下载PDF
基于模式识别的X射线荧光光谱法用于土壤重金属快速检测 被引量:3
11
作者 倪晓芳 张长波 唐晓勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2692-2700,共9页
土壤重金属的现场快速准确检测是实现土壤重金属污染防治的关键,便携式X射线荧光光谱仪可实现土壤中典型重金属的现场无损快速检测,且具有操作简单和无需消解处理的优势。基于该设备的X射线荧光光谱重金属分析方法受土壤基体效应影响严... 土壤重金属的现场快速准确检测是实现土壤重金属污染防治的关键,便携式X射线荧光光谱仪可实现土壤中典型重金属的现场无损快速检测,且具有操作简单和无需消解处理的优势。基于该设备的X射线荧光光谱重金属分析方法受土壤基体效应影响严重,导致其检测准确度受限,需通过基体相似的标准样品进行校正,故将基于模式识别的基体成分分类方法和标准曲线法相结合,实现对土壤中典型重金属的精准分析。以我国砖红壤、水稻土、黑土、潮土、黄棕壤和黄红壤等6种典型土壤的X射线荧光光谱和重金属含量为数据集,采用5点3次窗口平滑、最大最小值归一化方法和主成分分析(PCA)对光谱数据进行处理,以PCA降维后的前5个主成分作为输入特征变量,土壤类别为标签,建立基于径向基函数(RBF)的支持向量机(SVM)模式识别模型,实现基体成分的相似性分类,模型的超参数优化采用角蜥蜴优化算法,优化后的核参数g为0.0381,惩罚因子c为7.8529,此时5折交叉验证正确率为100%。定量方法为标准曲线法,6类土壤中Cr的相关系数为0.9947~0.9993,Ni的相关系数为0.9868~0.9994,Cu的相关系数为0.9929~0.9999,Zn的相关系数为0.9841~0.9998,Pb的相关系数为0.9877~0.9996,As&Pb的相关系数为0.9613~0.9995,在同一基体下,重金属线性关系较佳。采用建立RBF-SVM模式识别模型对预测集24个样品进行预测,预测结果表明6类土壤的分类正确率为100%,未出现错误分类。根据分类结果,选择对应的标准曲线进行定量分析。结果表明Cr、Ni、Cu、Zn、Pb和As的预测平均相对误差分别为2.24%、3.66%、2.72%、2.15%、2.13%和5.55%,均低于6%。说明RBF-SVM模型结合标准曲线法对土壤中典型重金属的快速检测具有很好的适用性,有望用于实际土壤典型重金属的快速定量分析与检测。 展开更多
关键词 土壤 重金属 支持向量机 模式识别 快速检测
在线阅读 下载PDF
单向阀微弱内泄漏故障征提取与模式识别研究
12
作者 熊力 刘宁 +1 位作者 童成彪 程军圣 《机械科学与技术》 CSCD 北大核心 2024年第5期756-764,共9页
单向阀被广泛应用于工程机械、农业机械、军事车辆液压系统中,泄漏是单向阀的常见故障。本文提出了一种基于时频分解的多源多域、多尺度特征提取与机器学习的单向阀微弱内泄漏故障诊断方法。对4类微弱内泄漏故障的振动信号和压力信号进... 单向阀被广泛应用于工程机械、农业机械、军事车辆液压系统中,泄漏是单向阀的常见故障。本文提出了一种基于时频分解的多源多域、多尺度特征提取与机器学习的单向阀微弱内泄漏故障诊断方法。对4类微弱内泄漏故障的振动信号和压力信号进行经验模态分解;采用时域、频域以及时频域的奇异值、波形因子、熵值等方法进行特征提取并构造故障特征向量;基于粒子群-支持向量机进行单向阀内泄漏故障模式识别。实验结果表明该方法能有效地检测单向阀内泄漏,模式识别准确率达到90%以上。本文为单向阀内泄漏量预测研究奠定了基础,具有较好的工程应用前景。 展开更多
关键词 单向阀 内泄漏 经验模态分解 支持向量机 模式识别
在线阅读 下载PDF
基于支持向量机的多特征融合纤维分类算法 被引量:1
13
作者 叶飞 刘伟红 +5 位作者 杨娟亚 陈朝宏 王振华 霍政彤 瞿瑞德 汪小东 《毛纺科技》 CAS 北大核心 2024年第9期104-110,共7页
针对市面上常用的人工鉴别法无法对多种类纤维的识别分类的问题,提出了一种新的适用于多种类纤维图像识别分类的多特征融合纤维分类算法。首先提取10类纤维图像的灰度直方图、局部二值模式(LBP)、方向梯度直方图(HOG)、Hu不变矩和灰度... 针对市面上常用的人工鉴别法无法对多种类纤维的识别分类的问题,提出了一种新的适用于多种类纤维图像识别分类的多特征融合纤维分类算法。首先提取10类纤维图像的灰度直方图、局部二值模式(LBP)、方向梯度直方图(HOG)、Hu不变矩和灰度共生矩阵(GLCM)特征,然后再将上述特征加权融合得到一个新特征,利用SVM模型对其进行训练(8000根纤维)和测试(2000根纤维),从而得到最终识别准确率。结果表明:该算法的平均准确率为85.8%,其中腈纶、醋酯纤维以及锦纶3类纤维的特征非常明显准确率达到90%以上,同时较难分辨的羊毛、羊绒纤维准确率也达到88%左右。该算法较好的达到了识别效果,为快速准确识别纤维提供技术基础。 展开更多
关键词 纤维图像 支持向量机 模式识别 机器学习
在线阅读 下载PDF
轨道几何状态检测异常数据实时智能识别 被引量:1
14
作者 程朝阳 王昊 +4 位作者 侯智雄 李颖 杨劲松 韩志 郝晋斐 《铁道建筑》 北大核心 2024年第2期25-29,共5页
受外界干扰、数据传输、传感器信号偏移等因素影响,轨道几何状态检测数据会产生异常峰值超限,影响现场检测人员工作效率。考虑到异常数据样本较少的不利因素,本文基于轨道几何检测系统传感器正常数据,通过消除数据趋势项,提取时序数据... 受外界干扰、数据传输、传感器信号偏移等因素影响,轨道几何状态检测数据会产生异常峰值超限,影响现场检测人员工作效率。考虑到异常数据样本较少的不利因素,本文基于轨道几何检测系统传感器正常数据,通过消除数据趋势项,提取时序数据多维特征组成训练集,训练并构建了基于单分类支持向量机的异常数据智能识别模型。运用该模型对某地铁轨道几何检测系统单边位移的时序数据进行预处理、特征提取和智能分类,试验验证了其识别效果。结果表明:该方法识别效果好,误报率低,异常数据识别准确率高,且具有轻量化、易部署的特点,可满足轨道几何检测系统实时检测要求。 展开更多
关键词 轨道几何状态检测 异常识别 特征提取 智能识别模型 单分类支持向量机 趋势项消除
在线阅读 下载PDF
一种SVM增量学习算法α-ISVM 被引量:85
15
作者 萧嵘 王继成 +1 位作者 孙正兴 张福炎 《软件学报》 EI CSCD 北大核心 2001年第12期1818-1824,共7页
基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础... 基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础上 ,进一步提出了一种基于遗忘因子α的 SVM增量学习改进算法α- ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识 ,使得对样本进行有选择地遗忘成为可能 .理论分析和实验结果表明 ,该算法能在保证分类精度的同时 ,有效地提高训练速度并降低存储空间的占用 . 展开更多
关键词 机器学习 SVM理论 增量学习算法 α-ISVM
在线阅读 下载PDF
一类光滑支持向量机新函数的研究 被引量:42
16
作者 熊金志 胡金莲 +2 位作者 袁华强 胡天明 李广明 《电子学报》 EI CAS CSCD 北大核心 2007年第2期366-370,共5页
光滑函数在支持向量机中起着重要作用,本文研究如何得到一类新的光滑函数.用插值函数的方法导出了一个重要的递推公式,得到了一类新的光滑函数,从而解决了长期困扰人们的一个问题,即如何寻求性能更好的光滑函数问题.还证明了该类函数的... 光滑函数在支持向量机中起着重要作用,本文研究如何得到一类新的光滑函数.用插值函数的方法导出了一个重要的递推公式,得到了一类新的光滑函数,从而解决了长期困扰人们的一个问题,即如何寻求性能更好的光滑函数问题.还证明了该类函数的若干性能,其逼近精度比Sigmoid函数的积分函数高一个数量级,也明显高于一阶和二阶光滑多项式,为支持向量机提供了一类新的光滑函数. 展开更多
关键词 分类 支持向量机 数据挖掘 插值 光滑
在线阅读 下载PDF
基于图像识别的小麦腥黑穗病害特征提取与分类 被引量:39
17
作者 邓继忠 李敏 +2 位作者 袁之报 金济 黄华盛 《农业工程学报》 EI CAS CSCD 北大核心 2012年第3期172-176,共5页
小麦的网腥、印度腥与矮腥黑穗病危害小麦生产与人体健康,是出入境检验检疫的重要对象。该文利用小麦腥黑穗病害显微图像,采用图像分析与识别技术进行了小麦的网腥、印度腥及矮腥3类病害的分类识别。在分离出单个病害孢子图像的基础上,... 小麦的网腥、印度腥与矮腥黑穗病危害小麦生产与人体健康,是出入境检验检疫的重要对象。该文利用小麦腥黑穗病害显微图像,采用图像分析与识别技术进行了小麦的网腥、印度腥及矮腥3类病害的分类识别。在分离出单个病害孢子图像的基础上,提取了3类病害孢子图像的16个形状和纹理特征,通过分析,从中选择小麦病害孢子的6个典型特征,并分别用最小距离法、BP神经网络和支持向量机分类器对提取的96个小麦腥黑穗病害孢子图像进行了分类试验,结果表明:支持向量机法对小麦腥黑穗病的分类识别能力优于最小距离法和BP神经网络,总体识别率达到82.9%。因此,采用图像分析技术和支持向量机识别方法进行小麦腥黑穗病害诊断的方法具有可行性。 展开更多
关键词 图像识别 支持向量机 分类 特征提取 小麦腥黑穗病害
在线阅读 下载PDF
基于支持向量数据描述的局部放电类型识别 被引量:46
18
作者 唐炬 林俊亦 +1 位作者 卓然 陶加贵 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1046-1053,共8页
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法... 电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。 展开更多
关键词 局部放电 支持向量机 SVM 支持向量数据描述 SVDD 拒识 模式识别
在线阅读 下载PDF
基于改进支持向量机的客户流失分析研究 被引量:41
19
作者 赵宇 李兵 +2 位作者 李秀 刘文煌 任守榘 《计算机集成制造系统》 EI CSCD 北大核心 2007年第1期202-207,共6页
针对客户关系管理中的客户流失问题,建立了基于支持向量机的预测模型。基于实际客户流失数据样本数据量大、正负样本分布不平衡的特点,提出了一种改进支持向量机算法,并将其用于电信行业的客户流失预测。通过实际电信客户数据集测试,与... 针对客户关系管理中的客户流失问题,建立了基于支持向量机的预测模型。基于实际客户流失数据样本数据量大、正负样本分布不平衡的特点,提出了一种改进支持向量机算法,并将其用于电信行业的客户流失预测。通过实际电信客户数据集测试,与传统的预测算法比较,证明这种算法适合解决大数据集和不平衡数据,具有更高的精确度。 展开更多
关键词 客户流失 支持向量机 客户关系管理 预测 模式识别
在线阅读 下载PDF
多核学习方法 被引量:156
20
作者 汪洪桥 孙富春 +2 位作者 蔡艳宁 陈宁 丁林阁 《自动化学报》 EI CSCD 北大核心 2010年第8期1037-1050,共14页
多核学习方法是当前核机器学习领域的一个新的热点.核方法是解决非线性模式分析问题的一种有效方法,但在一些复杂情形下,由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求,因此... 多核学习方法是当前核机器学习领域的一个新的热点.核方法是解决非线性模式分析问题的一种有效方法,但在一些复杂情形下,由单个核函数构成的核机器并不能满足诸如数据异构或不规则、样本规模巨大、样本不平坦分布等实际的应用需求,因此将多个核函数进行组合,以获得更好的结果是一种必然选择.本文根据多核的构成,从合成核、多尺度核、无限核三个角度,系统综述了多核方法的构造理论,分析了多核学习典型方法的特点及不足,总结了各自的应用领域,并凝炼了其进一步的研究方向. 展开更多
关键词 核方法 多核学习 合成核 多尺度核 支持向量机 模式识别 回归
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部