A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element...A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency.展开更多
In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element m...In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element methods,there are two attractive features of the methods shown in this article:1)a partition of unity is used to generate a series of local and independent subproblems to guarantee the final approximation globally continuous;2)the computational domain of each local subproblem is contained in a ball with radius of O(H)(H is the coarse mesh parameter),which means methods in this article are more suitable for parallel computing in a large parallel computer system.Some a priori error estimation are obtained and optimal error bounds in both H^1-normal and L^2-normal are derived.Finally,numerical results are reported to test and verify the feasibility and validity of our methods.展开更多
基金Project supported by the National Basic Research Program of China (973Project) (No.2002CB412709) and the National Natural Science Foundation of China (Nos.50278012,10272027,19832010)
文摘A partition of unity finite element method for numerical simulation of short wave propagation in solids is presented. The finite element spaces were constructed by multiplying the standard isoparametric finite element shape functions, which form a partition of unity, with the local subspaces defined on the corresponding shape functions, which include a priori knowledge about the wave motion equation in trial spaces and approximately reproduce the highly oscillatory properties within a single element. Numerical examples demonstrate the performance of the proposed partition of unity finite element in both computational accuracy and efficiency.
基金Subsidized by NSFC (11701343)partially supported by NSFC (11571274,11401466)
文摘In this article,two kinds of expandable parallel finite element methods,based on two-grid discretizations,are given to solve the linear elliptic problems.Compared with the classical local and parallel finite element methods,there are two attractive features of the methods shown in this article:1)a partition of unity is used to generate a series of local and independent subproblems to guarantee the final approximation globally continuous;2)the computational domain of each local subproblem is contained in a ball with radius of O(H)(H is the coarse mesh parameter),which means methods in this article are more suitable for parallel computing in a large parallel computer system.Some a priori error estimation are obtained and optimal error bounds in both H^1-normal and L^2-normal are derived.Finally,numerical results are reported to test and verify the feasibility and validity of our methods.
文摘C^1连续,即一阶导数连续. C^1连续型插值格式具有同时适用于离散PDE的弱形式与强形式的优点——即一种插值格式可以在使用PDE弱形式还是强形式之间做出选择,从而构造出更加高效的数值方法.由于单位分解广义有限元方法 (PUFEM, Babuka and Melenk (1997)),允许用户根据局部解的特征自定义任意高阶局部近似,具有精度高、程序实现与传统有限元相容性好的特点而受到广泛关注.但是,其总体近似函数的光滑性是由其所采用的单位分解函数——一般为标准有限元形函数——的光滑性所决定,因此多为C^0连续.如何在C^0连续标准有限元形函数的基础上,构造出满足C^1连续的总体近似函数,是一个仍未解决的问题.本文在作者前期研究的无额外自由度的单位分解插值格式的基础上,仅基于C^0标准有限元形函数,构造出至少C^1连续的无额外自由度单位分解格式.针对Poisson方程,讨论了该格式对PDE弱形式与强形式的离散.测试结果表明,方法可以同时用于弱形式与强形式的数值求解,而且可以在不改变网格和自由度数的前提下,获得高阶收敛.使用该插值格式的条件是:网格须是直角坐标网格(不要求均匀).该插值格式可以同时用于流体力学问题和使用欧拉背景网格求解动量方程的固体力学方法,如材料物质点法(material point method).对于强形式的欧拉网格求解,该插值格式与"差分"不同之处在于,它具有有限元一样的在任意点处进行"插值"的特点.对于弱形式的积分求解,由于该插值格式具有导数连续性,可以允许积分网格独立于插值网格.这一特点将使得弱形式的数值积分的实施更加灵活方便.