期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
1
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
基于BPSO-PSO-LSSVM算法的上肢sEMG分类
2
作者 贠今天 苗冠 +1 位作者 李帅 耿梓敬 《科学技术与工程》 北大核心 2025年第18期7686-7692,共7页
作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,... 作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,该方法采用二进制粒子群优化(binary particle swarm optimization, BPSO)算法对特征进行筛选后,进一步采用粒子群优化(particle swarm optimization, PSO)算法调整最小二乘支持向量机(least squares support vector machine, LSSVM)的超参数。通过采集人上体4个部位的表面肌电信号并提取其中48维特征,对上肢常见的4种动作进行分类实验,结果表明,BPSO-PSO-LSSVM算法仅保留肌电数据的21维特征,得到的平均分类准确率达到97.54%,证明该方法可以有效筛选出用于上肢动作分类的最佳特征组合,并且提高运动分类的准确率。 展开更多
关键词 表面肌电信号 特征选择 二进制粒子群优化 粒子群优化 动作分类 最小二乘支持向量机
在线阅读 下载PDF
信息熵融合的PSO-SVC涡旋压缩机故障诊断 被引量:6
3
作者 刘涛 梁成玉 《振动.测试与诊断》 EI CSCD 北大核心 2022年第1期141-147,200,共8页
针对涡旋压缩机振动信号的不稳定性及难以获取大量故障样本的问题,提出了一种信息熵融合与粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector classification,简称SVC)涡旋压缩机故障诊断方法。通过奇异... 针对涡旋压缩机振动信号的不稳定性及难以获取大量故障样本的问题,提出了一种信息熵融合与粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector classification,简称SVC)涡旋压缩机故障诊断方法。通过奇异谱熵和功率谱熵分析,分别提取振动信号时域与频域特征,采用变分模态分解(variational modede composition,简称VMD)能量熵衡量故障振动信号时⁃频域特征,利用因子分析融合奇异谱熵、功率谱熵和能量熵值得到单一评价指标特征向量。将评价指标作为PSO⁃SVC模型的输入,通过训练建立PSO⁃SVC涡旋压缩机故障分类模型。实验结果表明,该方法在小样本情况下,仍能有效地对涡旋压缩机4种典型故障类型进行分类,准确率达到94.5%。 展开更多
关键词 信息熵融合 粒子群优化⁃支持向量回归 涡旋压缩机 故障诊断
在线阅读 下载PDF
基于粒子群-支持向量机算法的激光诱导击穿光谱钢铁快速检测与分类 被引量:2
4
作者 曾庆栋 陈光辉 +8 位作者 李文鑫 孟久灵 李耿 童巨红 田志辉 张晓林 李国辉 郭连波 肖永军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1559-1565,共7页
钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意... 钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意义。利用激光诱导击穿光谱技术(LIBS)进行10种钢铁样品光谱数据的快速采集,并采用支持向量机(SVM)算法对其数据进行学习建模,得到钢铁快速分类模型。然而,由于不同钢铁样品的光谱数据特征是复杂且相似的,导致设置的模型参数也会对SVM模型的分类结果有着较大的影响。为了实现对不同牌号钢铁合金的快速检测分类,实验中采用粒子群算法(PSO)与网格寻优法两种不同方法来优化模型参数,并分别选取样品中6种微量元素(Mn、Cr、Cu、V、Mo、Ti)的17条特征谱线,和经主成分分析法(PCA)对全谱数据降维提取得到的前17个主成分作为模型的输入,建立PSO-SVM、PSO-PCA-SVM、PCA-SVM和SVM四种分类模型。实验结果表明,相比于精度最高的PCA-SVM模型的优化时间(257.84 s),PSO-SVM模型优化时间最短(11.5 s),且识别精度可达96.67%,与PCA-SVM模型的精度(97.5%)几乎相当。该结果表明LIBS结合PSO-SVM算法可实现快速的钢铁检测与分类,该方法为钢铁产品的快速检测与分类提供了一种新的解决途径。 展开更多
关键词 激光诱导击穿光谱 支持向量机 粒子群算法 钢铁分类
在线阅读 下载PDF
基于改进支持向量机的智能电能表故障多分类方法
5
作者 陈文礼 程瑛颖 +2 位作者 舒永生 刘型志 谢广成 《电测与仪表》 北大核心 2024年第7期218-224,共7页
智能电能表故障多分类对于制定合理及时的智能电能表检修计划具有重要意义。针对智能电能表故障多分类问题,采用支持向量机构建多分类模型,所建立的模型提取智能电能表的输出电压、输出电流、输出功率、功率因数误差等数据作为分类依据... 智能电能表故障多分类对于制定合理及时的智能电能表检修计划具有重要意义。针对智能电能表故障多分类问题,采用支持向量机构建多分类模型,所建立的模型提取智能电能表的输出电压、输出电流、输出功率、功率因数误差等数据作为分类依据构建多维空间,考虑包括误差超差、直流电流开路、直流电压短路、控制回路短线在内的智能电能表模式识别故障分类。通过所建立的模型依据有限的样本信息在复杂性和学习性之间寻求平衡,对智能电能表多维度运行信息在超平面之间进行最佳分类从而进行故障分类,通过引入一类对多类的最优分类平面集进行改进从而适用于多分类模型。采用混沌粒子群算法针对所建立的基于改进支持向量机的智能电能表故障多分类方法进行求解流程设计。再通过对某配电台区智能电能表故障分类问题采用所建立的模型进行仿真,验证了模型的合理性。 展开更多
关键词 智能电能表 多故障分类 支持向量机 最优分类面集 混沌粒子群算法
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:125
6
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小二乘支持向量机 多类分类 粒子群优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
基于粒子群算法的决策树SVM多分类方法研究 被引量:93
7
作者 王道明 鲁昌华 +2 位作者 蒋薇薇 肖明霞 李必然 《电子测量与仪器学报》 CSCD 北大核心 2015年第4期611-615,共5页
针对SVM多分类问题提出了一种基于粒子群算法的最优决策树SVM生成算法,以解决传统支持向量机多分类方法存在的不可分区域和误差积累现象。该方法利用自变异的PSO聚类算法在每一决策节点自动寻找最优或近优分类决策,将数据集划分为两类,... 针对SVM多分类问题提出了一种基于粒子群算法的最优决策树SVM生成算法,以解决传统支持向量机多分类方法存在的不可分区域和误差积累现象。该方法利用自变异的PSO聚类算法在每一决策节点自动寻找最优或近优分类决策,将数据集划分为两类,直至叶子节点为止,最终根据最优决策树构建SVM多分类结构,训练各个节点SVM分类器。将该算法应用于图像人群密度分类问题,仿真实验表明,分类精度和分类时间得到明显改善,是一种有效地的多分类算法。 展开更多
关键词 支持向量机 粒子群算法 决策树 多分类
在线阅读 下载PDF
基于ReliefF和PSO混合特征选择的面向对象土地利用分类 被引量:57
8
作者 肖艳 姜琦刚 +3 位作者 王斌 李远华 刘舒 崔璨 《农业工程学报》 EI CAS CSCD 北大核心 2016年第4期211-216,共6页
针对面向对象土地利用分类存在特征维数过高的问题,提出了一种结合Relief F和粒子群优化算法(particle swarm optimization,PSO)的混合特征选择方法,即首先利用Relief F作为特征预选器滤除相关性小的特征,然后以PSO作为搜索算法,以支持... 针对面向对象土地利用分类存在特征维数过高的问题,提出了一种结合Relief F和粒子群优化算法(particle swarm optimization,PSO)的混合特征选择方法,即首先利用Relief F作为特征预选器滤除相关性小的特征,然后以PSO作为搜索算法,以支持向量机(support vector machine,SVM)的分类精度作为评估函数在剩余特征中选择出最优特征子集。该文以吉林省长春市部分区域为研究区,采用Landsat8遥感影像为数据源,首先对其进行多尺度分割,然后提取影像对象的光谱、纹理、形状和空间关系特征,利用提出的混合特征选择方法选取最优特征子集,最后使用SVM分类器对研究区进行土地利用分类,总体分类精度和Kappa系数分别为85.88%和0.8036,与基于4种其他特征选择方法的土地利用分类结果进行比较,基于Relief F和PSO的混合特征选择方法利用最少的特征获得最高的分类精度,能够有效地用于面向对象土地利用分类。 展开更多
关键词 土地利用 分类 支持向量机 特征选择 面向对象 RELIEFF 粒子群优化算法
在线阅读 下载PDF
基于粒子群优化算法的PSO-BP海底声学底质分类方法 被引量:15
9
作者 陈佳兵 吴自银 +3 位作者 赵荻能 周洁琼 李守军 尚继宏 《海洋学报》 CAS CSCD 北大核心 2017年第9期51-57,共7页
利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特... 利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特征向量,利用PSO-BP方法对海底底质进行分类识别。实验表明,3类底质分类精度均大于90%,高于BP神经网络70%左右的分类精度,表明PSO-BP方法可有效应用于海底底质的分类识别。 展开更多
关键词 基于粒子群优化算法的BP神经网络 特征向量 粒子群算法 底质分类
在线阅读 下载PDF
基于粒子群优化支持向量机的变压器故障诊断 被引量:49
10
作者 费胜巍 苗玉彬 +1 位作者 刘成良 张晓斌 《高电压技术》 EI CAS CSCD 北大核心 2009年第3期509-513,共5页
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类... 为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 展开更多
关键词 故障诊断 粒子群优化 支持向量机 电力变压器 参数优化 分类算法 统计学习理论
在线阅读 下载PDF
基于改进粒子群优化SVM的多分类入侵检测研究 被引量:8
11
作者 杨智慧 王华忠 +1 位作者 颜秉勇 陈冬青 《广西大学学报(自然科学版)》 CAS 北大核心 2016年第3期779-785,共7页
针对工控网络数据的高维特性以及攻击方式多样性而导致传统入侵检测算法检测准确率低等问题,采用改进粒子群(PSO)算法优化支持向量机的参数,提出改进的PSO-SVM多分类入侵检测方法。该方法将SVM参数作为改进PSO的粒子,将SVM分类准确率作... 针对工控网络数据的高维特性以及攻击方式多样性而导致传统入侵检测算法检测准确率低等问题,采用改进粒子群(PSO)算法优化支持向量机的参数,提出改进的PSO-SVM多分类入侵检测方法。该方法将SVM参数作为改进PSO的粒子,将SVM分类准确率作为PSO的目标函数进行全局搜索以确定SVM的最优参数,建立基于改进PSO-SVM的"一对一"多分类工控入侵检测模型。最后采用密西西比州立大学关键基础设施保护中心提出的工控标准数据集进行仿真实验,结果表明,该算法针对不同的攻击方式的平均检测准确率均能达到90%以上,能够准确识别攻击类型,可为工控系统入侵检测提供有效方法。 展开更多
关键词 入侵检测 粒子群 支持向量机 多分类
在线阅读 下载PDF
融合Shapley值和粒子群优化算法的混合特征选择算法 被引量:8
12
作者 邓秀勤 李文洲 +1 位作者 武继刚 刘太亨 《计算机应用》 CSCD 北大核心 2018年第5期1245-1249,共5页
针对在模式分类问题中,数据往往存在不相关的或冗余的特征,从而影响分类的准确性的问题,提出一种融合Shapley值和粒子群优化算法的混合特征选择算法,以利用最少的特征获得最佳分类效果。在粒子群优化算法的局部搜索中引入博弈论的Shaple... 针对在模式分类问题中,数据往往存在不相关的或冗余的特征,从而影响分类的准确性的问题,提出一种融合Shapley值和粒子群优化算法的混合特征选择算法,以利用最少的特征获得最佳分类效果。在粒子群优化算法的局部搜索中引入博弈论的Shapley值,首先计算粒子(特征子集)中每个特征对分类效果的贡献值(Shapley值),然后逐步删除Shapley值最低的特征以优化特征子集,进而更新粒子,同时也增强了算法的全局搜索能力,最后将改进后的粒子群优化算法运用于特征选择,以支持向量机分类器的分类性能和选择的特征数目作为特征子集评价标准,对UCI机器学习数据集和基因表达数据集的17个具有不同特征数量的医疗数据集进行分类实验。实验结果表明所提算法能有效地删除数据集中55%以上不相关的或冗余的特征,尤其对于中大型数据集能删减80%以上,并且所选择的特征子集也具有较好的分类能力,分类准确率能提高2至23个百分点。 展开更多
关键词 模式分类 粒子群优化算法 SHAPLEY值 特征选择 支持向量机
在线阅读 下载PDF
基于自适应PSO算法的LS-SVM牵引变压器绝缘故障诊断模型 被引量:9
13
作者 方科 黄元亮 刘新东 《电力自动化设备》 EI CSCD 北大核心 2011年第3期85-89,共5页
结合罗杰斯比值法,基于自适应PSO算法和最小二乘支持向量机(LS-SVM),提出一种牵引变压器绝缘故障诊断模型。该模型提出一种自适应PSO算法,即根据群体的收敛程度和个体的适应值来调整惯性权重,加快训练速度,利用该算法迭代求解LS-SVM中... 结合罗杰斯比值法,基于自适应PSO算法和最小二乘支持向量机(LS-SVM),提出一种牵引变压器绝缘故障诊断模型。该模型提出一种自适应PSO算法,即根据群体的收敛程度和个体的适应值来调整惯性权重,加快训练速度,利用该算法迭代求解LS-SVM中出现的矩阵方程,避免矩阵求逆,节省内存;为了快速和准确地区分牵引变压器12种绝缘故障,该模型构建12个自适应PSO的LS-SVM分类器。通过对600组牵引变压器的故障数据的处理表明,所提出的基于自适应PSO优化的LS-SVM算法优于经典SVM算法和标准PSO的LS-SVM算法,收敛速度快,识别精度高。 展开更多
关键词 故障诊断 牵引变压器 最小二乘支持向量机 粒子群优化 罗杰斯比值法 多分类
在线阅读 下载PDF
基于粒子群-支持向量机的时间序列分类诊断模型 被引量:7
14
作者 张涛 张明辉 +1 位作者 李清伟 张玥杰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第9期1450-1457,共8页
构建一种基于粒子群算法-支持向量机(PSO-SVM)的磁共振功能成像(fMRI)时间序列分类诊断模型,通过针对脑区多维时间序列数据的深层次分析实现病症患者和健康者的准确判断与区分,为面向fMRI时间序列数据的病症诊断和预测提供有效科学依据... 构建一种基于粒子群算法-支持向量机(PSO-SVM)的磁共振功能成像(fMRI)时间序列分类诊断模型,通过针对脑区多维时间序列数据的深层次分析实现病症患者和健康者的准确判断与区分,为面向fMRI时间序列数据的病症诊断和预测提供有效科学依据.该方法在以下4个方面不同于其他已有相关研究工作:(1)构建基于自回归模型的脑区多维时间序列数据特征表示;(2)构建基于支持向量机模型的脑区多维时间序列数据分类机制;(3)构建基于粒子群算法的分类学习参数寻优策略;(4)建立融合上述特征表示、优化分类与参数优选模式的fMRI时间序列数据分类诊断模型.通过以精神抑郁症作为实证分析的具体案例,所提出分类诊断模型已取得良好实验效果,展示出其有效性与合理性. 展开更多
关键词 fMRI多维时间序列 分类诊断 自回归模型 支持向量机(SVM) 粒子群算法(PSO)
在线阅读 下载PDF
采用改进最小闭包球向量机的电力信息网络入侵检测方法 被引量:8
15
作者 王宇飞 赵婷 +2 位作者 李韶瑜 赵保华 李玉杰 《电网技术》 EI CSCD 北大核心 2013年第9期2675-2680,共6页
为降低电力信息网络入侵检测的检测误差和检测耗时,提出一种基于改进最小闭包球向量机(minimum enclosing ball vector machine,MEBVM)的入侵检测方法。该方法将入侵检测抽象成多分类问题,通过改进MEBVM对历史数据样本的训练学习来得到... 为降低电力信息网络入侵检测的检测误差和检测耗时,提出一种基于改进最小闭包球向量机(minimum enclosing ball vector machine,MEBVM)的入侵检测方法。该方法将入侵检测抽象成多分类问题,通过改进MEBVM对历史数据样本的训练学习来得到入侵检测模型。改进MEBVM利用最小闭包球降低检测耗时,并在训练过程中利用粒子群优化算法动态搜索MEBVM的最优训练参数以降低入侵检测模型误差。最后基于电力信息网络现场数据的实验证明,该方法与传统方法相比具有更高的检测精度和更少的检测耗时。 展开更多
关键词 电力信息网络 入侵检测 最小闭包球向量机 粒子群优化算法 多分类问题 误差分析 检测耗时
在线阅读 下载PDF
基于粒子群优化算法的LS-SVM财务预警 被引量:7
16
作者 周辉仁 郑丕谔 +1 位作者 王嵩 刘春霞 《计算机工程》 CAS CSCD 北大核心 2009年第10期280-282,共3页
提出一种基于粒子群优化算法优化有关参数的最小二乘支持向量机的财务预警模型。通过提出适当的验证性能指标,用粒子群优化算法优化最小二乘支持向量机的有关参数,利用上市公司的财务数据对该方法进行实证财务预警分析。仿真结果表明,... 提出一种基于粒子群优化算法优化有关参数的最小二乘支持向量机的财务预警模型。通过提出适当的验证性能指标,用粒子群优化算法优化最小二乘支持向量机的有关参数,利用上市公司的财务数据对该方法进行实证财务预警分析。仿真结果表明,该模型的精确度令人满意,该方法是可行且有效的。 展开更多
关键词 最小二乘支持向量机 粒子群优化算法 模式分类 财务预警
在线阅读 下载PDF
改进PSO-SVM的光纤传感网络数据识别系统 被引量:8
17
作者 马莉莉 高静 +1 位作者 申志军 刘江平 《激光与红外》 CAS CSCD 北大核心 2022年第5期734-739,共6页
为了增强光纤传感网络对相近扰动信号的识别能力,提高目标分类精度,提出了一种改进的粒子群优化-支持向量机(PSO-SVM)算法。该算法在分析回波信号谱形特征的基础上,设计了三个用于描述信号特征的判断指标。将主波信号能量、主波脉宽及... 为了增强光纤传感网络对相近扰动信号的识别能力,提高目标分类精度,提出了一种改进的粒子群优化-支持向量机(PSO-SVM)算法。该算法在分析回波信号谱形特征的基础上,设计了三个用于描述信号特征的判断指标。将主波信号能量、主波脉宽及波形变化率作为数据预处理的特征参量,改进了传统的数据分类模型。实验模拟了实际应用中的三种典型干扰形式,以机械、人工以及坠落物对测试区域地面进行冲击测试,并对比了不同距离和不同强度情况下的响应效果。结果显示,6种不同情况对应的谱形特征有3种,相同作用机制的谱形相似度很高。特征参量的响应值随着测试距离的增大而减小,随着冲击强度的增大而增强。对相同测试数据进行扰动信号分析,传统SVM算法平均识别概率为69.3%,而该算法平均识别概率为90.1%。可见,该算法在提高光纤传感网络扰动信号分类能力方面具有一定的优势。 展开更多
关键词 光纤传感网络 粒子群优化-支持向量机 特征参数 分类识别概率
在线阅读 下载PDF
基于改进孪生支持向量机的齿廓图像边缘失真分类研究 被引量:4
18
作者 孙禾 赵文珍 +1 位作者 赵文辉 段振云 《光子学报》 EI CAS CSCD 北大核心 2020年第10期179-191,共13页
提出了一种基于最优分类特征的偏二叉树孪生支持向量机多分类算法(OCF-PBT-TWS⁃VM),以实现针对齿廓图像边缘失真的非平稳瞬态随机信号进行有效分类,满足齿轮视觉测量实时性和失真补偿精度的要求.选择边缘动态分量信号最大值vm、边缘失... 提出了一种基于最优分类特征的偏二叉树孪生支持向量机多分类算法(OCF-PBT-TWS⁃VM),以实现针对齿廓图像边缘失真的非平稳瞬态随机信号进行有效分类,满足齿轮视觉测量实时性和失真补偿精度的要求.选择边缘动态分量信号最大值vm、边缘失真信号位置qu、边缘失真率rlv构成特征向量,组成训练样本集和测试样本集;以失真补偿需求为目标定义变权值特征向量测度γ,按照γ递减原则自顶向下完成OCF-PBT-TWSVM算法构建;采用粒子群优化方法进行算法参数优化,使c1,c2,g参数的性能达到最优.试验结果表明:在小样本数据情况下,提出的OCF-PBT-TWSVM多分类算法的最终分类准确率达96.96%,与PBT-SVM多分类算法相比具有更好的分类效果、训练速度也更快,能够满足后续失真补偿测量精度和齿轮视觉测量实时性的需求. 展开更多
关键词 图像边缘失真 偏二叉树 孪生支持向量机 粒子群优化 多分类
在线阅读 下载PDF
基于PSO结合SVM的肉品新鲜度判别方法 被引量:5
19
作者 刘静 管骁 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2012年第3期288-292,321,共6页
通过测定4种肉样品(猪肉、牛肉、羊肉及虾)的挥发性盐基氮(TVB-N)、细菌总数、pH值和感官评分等指标数据,运用支持向量机方法对以上数据进行综合训练得到数学模型,并对SVM模型参数采用粒子群优化算法进行优化,拟实现肉品新鲜度的快速准... 通过测定4种肉样品(猪肉、牛肉、羊肉及虾)的挥发性盐基氮(TVB-N)、细菌总数、pH值和感官评分等指标数据,运用支持向量机方法对以上数据进行综合训练得到数学模型,并对SVM模型参数采用粒子群优化算法进行优化,拟实现肉品新鲜度的快速准确分类.结果表明:仅采用某一项理化指标对肉品新鲜度进行判定误判率较高,而采用默认参数条件下的以RBF为核函数的SVM模型能一定程度上提高判别准确率,但利用PSO优化的SVM模型能将肉品新鲜度判别准确率提高到100%,且模型还具有极好的稳定性. 展开更多
关键词 肉品新鲜度 判别 粒子群优化算法 支持向量机 优化
在线阅读 下载PDF
基于粒子群优化支持向量机的焊接缺陷分类 被引量:5
20
作者 陈渊 马宏伟 《仪表技术与传感器》 CSCD 北大核心 2013年第4期81-83,86,共4页
缺陷的自动分类在焊接缺陷的超声无损检测与评价中具有十分重要的意义。而支持向量机是一种性能优越的机器学习方法,在小样本、非线性及高维模式分类问题中能找到全局最优解,因此,支持向量机在超声检测缺陷分类方面具有良好的应用前景... 缺陷的自动分类在焊接缺陷的超声无损检测与评价中具有十分重要的意义。而支持向量机是一种性能优越的机器学习方法,在小样本、非线性及高维模式分类问题中能找到全局最优解,因此,支持向量机在超声检测缺陷分类方面具有良好的应用前景。然而,在实际应用中,选择合适的支持向量机参数是很困难的,影响了分类器的性能和分类精度。针对支持向量机训练中人为选择参数的随意性,提出基于粒子群优化的支持向量机参数自动选择方法,并将其应用于焊接缺陷的分类。该方法采用分类正确率作为优化问题的适应度函数,利用粒子群算法对支持向量机参数进行优化。为验证该方法的有效性,并和常规支持向量机、遗传算法优化的支持向量机进行比较,分别采用标准数据集和焊接缺陷实验数据集进行了分类测试。实验结果表明,该方法获得了比常规支持向量机和遗传算法优化的支持向量机更高的分类正确率。 展开更多
关键词 支持向量机 粒子群优化 缺陷分类 超声检测
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部