A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ...A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.展开更多
目前中国西藏地区甚高频(very high frequency,VHF)通信台站在7000 m及以上高空航路通信信号覆盖存在覆盖盲区,但是并没有针对VHF通信信号盲区补盲方面的研究及对应的解决办法。为了解决以上问题,提出了一种以西藏地区的实际地形为优化...目前中国西藏地区甚高频(very high frequency,VHF)通信台站在7000 m及以上高空航路通信信号覆盖存在覆盖盲区,但是并没有针对VHF通信信号盲区补盲方面的研究及对应的解决办法。为了解决以上问题,提出了一种以西藏地区的实际地形为优化算法搜索对象,以拉萨管制区管辖范围内航路通信信号的单重覆盖率、双重覆盖率及管制区的冗余度为指标的补盲部署数学模型。接着,在不改变西藏地区原有VHF通信台站数量和位置的基础上,利用模拟退火粒子群算法,采用最小频率最少台站个数寻找一个最优台站对未覆盖的一段航路进行VHF通信信号覆盖研究。仿真结果表明,该算法不仅实现了采用最小频率最少台站个数解决航路通信信号覆盖盲区的目标,而且克服了粒子群算法在寻优过程中易陷入局部最优解的缺点,同时也证明了提出的补盲部署数学模型的正确性及改进的粒子群算法的高效性。该算法和模型可以为航线网路规划、台站部署优化及最终通过该方法解决频谱资源匮乏问题提供理论支撑和技术支持。展开更多
为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级...为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。展开更多
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.
文摘为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的焊接缺陷三阈值图像分割方法。首先通过灰度值、平均灰度值和中值灰度值建立图像的三维最大类间方差(Otsu)模型;其次引入自适应惯性权重和非对称学习因子并融入SA策略增强算法求解效率和跳出局部最优的能力;最后利用SA-IPSO算法优化三维Otsu模型求解得到最佳阈值对应的缺陷分割图像。采用不同算法和模型对焊接缺陷图像进行分割,结果表明:对于裂纹和气孔焊接缺陷图像,本文算法在峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)评价指标上均优于对比算法,在加快算法收敛的同时避免分割结果失真,提高了分割精度。
文摘目前中国西藏地区甚高频(very high frequency,VHF)通信台站在7000 m及以上高空航路通信信号覆盖存在覆盖盲区,但是并没有针对VHF通信信号盲区补盲方面的研究及对应的解决办法。为了解决以上问题,提出了一种以西藏地区的实际地形为优化算法搜索对象,以拉萨管制区管辖范围内航路通信信号的单重覆盖率、双重覆盖率及管制区的冗余度为指标的补盲部署数学模型。接着,在不改变西藏地区原有VHF通信台站数量和位置的基础上,利用模拟退火粒子群算法,采用最小频率最少台站个数寻找一个最优台站对未覆盖的一段航路进行VHF通信信号覆盖研究。仿真结果表明,该算法不仅实现了采用最小频率最少台站个数解决航路通信信号覆盖盲区的目标,而且克服了粒子群算法在寻优过程中易陷入局部最优解的缺点,同时也证明了提出的补盲部署数学模型的正确性及改进的粒子群算法的高效性。该算法和模型可以为航线网路规划、台站部署优化及最终通过该方法解决频谱资源匮乏问题提供理论支撑和技术支持。
文摘为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。