Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ...Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.展开更多
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin...An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.展开更多
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter mode...A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate.展开更多
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example an...To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.展开更多
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ...As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.展开更多
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i...For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data.展开更多
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr...To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network...Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.展开更多
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta...Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation...Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time.展开更多
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating...Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.展开更多
In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p...In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure.展开更多
基金Projects(70373017 70572090) supported by the National Natural Science Foundation of China
文摘Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
基金Project(Z132012) supported by the Second Five Technology-based Fund in Science and Industry Bureau of ChinaProject(1004GK0032) supported by General Armament Department for the Common Issues of Military Electronic Components,China
文摘A lifetime prediction method for high-reliability tantalum (Ta) capacitors was proposed, based on multiple degradation measures and grey model (GM). For analyzing performance degradation data, a two-parameter model based on GM was developed. In order to improve the prediction accuracy of the two-parameter model, parameter selection based on particle swarm optimization (PSO) was used. Then, the new PSO-GM(1, 2, co) optimization model was constructed, which was validated experimentally by conducting an accelerated testing on the Ta capacitors. The experiments were conducted at three different stress levels of 85, 120, and 145℃. The results of two experiments were used in estimating the parameters. And the reliability of the Ta capacitors was estimated at the same stress conditions of the third experiment. The results indicate that the proposed method is valid and accurate.
基金Project(2013AA063903)supported by High-tech Research and Development Program of China
文摘To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20114307120032)the National Natural Science Foundation of China(71201167)
文摘As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.
文摘For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data.
基金supported by the National Natural Science Foundation of China (61502522)Hubei Provincial Natural Science Foundation(2019CFC897)。
文摘To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.
基金Project(2007CB311106) supported by National Key Basic Research Program of ChinaProject(NEUL20090101) supported by the Foundation of National Information Control Laboratory of China
文摘Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.
文摘Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model.
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.
基金Project(41272137) supported by the National Natural Science Foundation of China
文摘Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time.
文摘Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.
基金Project(2022YFC3004304)supported by the National Key Research and Development Program of ChinaProjects(52078487,U1934207,52178180)supported by the National Natural Science Foundation of China+2 种基金Project(2022TJ-Y10)supported by the Hunan Province Science and Technology Talent Lifting Project,ChinaProject(2023QYJC006)supported by the Frontier Cross Research Project of Central South University,ChinaProject(SKL-IoTSC(UM)-2024-2026/ORP/GA08/2023)supported by the Science and Technology Development Fund and the State Key Laboratory of Internet of Things for Smart City(University of Macao),China。
文摘In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure.