期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Development of High-energy Particle Detectors for Space Exploration
1
作者 YANG Zhe SHEN Guohong JING Tao 《空间科学学报》 CAS CSCD 北大核心 2022年第6期1171-1184,共14页
Space environment exploration is a hot topic globally.The scope of space exploration ranges from near-Earth space to the moon,other planets in the solar system,and even the heliosphere and interplanetary space.It is u... Space environment exploration is a hot topic globally.The scope of space exploration ranges from near-Earth space to the moon,other planets in the solar system,and even the heliosphere and interplanetary space.It is used for various crucial applications,including aerospace technology development,space weather research,understanding the origin and evolution of the universe,searching for extraterrestrial life,and finding human livable places.Although China’s space environment exploration started late,its progress has been rapid.China is gradually narrowing the gap with advanced countries and may eventually lead the world in space research.This article briefly reviews the development history of China’s space environmental detectors. 展开更多
关键词 High-energy particle detectors Near-Earth space exploration Lunar exploration Space environment
在线阅读 下载PDF
A LN2-based cooling system for a next-generation liquid xenon dark matter detector 被引量:3
2
作者 Karl Ludwig Giboni Pratibha Juyal +2 位作者 Elena Aprile Yun Zhang Junji Naganoma 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期24-34,共11页
In recent years, cooling technology for liquid xenon(LXe) detectors has advanced driven by the development of dark matter(DM) detectors with target mass in the 100–1000 kg range. The next generation of DM detectors b... In recent years, cooling technology for liquid xenon(LXe) detectors has advanced driven by the development of dark matter(DM) detectors with target mass in the 100–1000 kg range. The next generation of DM detectors based on LXe will be in the 50,000 kg(50 t)range requiring more than 1 k W of cooling power. Most of the prior cooling methods become impractical at this level.For cooling a 50 t scale LXe detector, a method is proposed in which liquid nitrogen(LN2) in a small local reservoir cools the xenon gas via a cold finger. The cold finger incorporates a heating unit to provide temperature regulation. The proposed cooling method is simple, reliable, and suitable for the required long-term operation for a rare event search. The device can be easily integrated into present cooling systems, for example the ‘‘Cooling Bus’ ’employed for the Panda X I and II experiments. It is still possible to cool indirectly with no part of the cooling or temperature control system getting in direct contact with the clean xenon in the detector. Also, the cooling device can be mounted at a large distance, i.e., the detector is cooled remotely from a distance of 5–10 m. The method was tested in a laboratory setup at Columbia University to carry out different measurements with a small LXe detector and behaved exactly as predicted. 展开更多
关键词 Noble liquid detectors(scintillation ionization double-phase) Dark matter detectors(WIMPs axions etc.) Large detector systems for particle and astroparticle physics Very low-energy charged particle detectors Time projection chambers Cryogenics detector cooling and thermo-stabilization
在线阅读 下载PDF
CsI-bowl:an ancillary detector for exit channel selection inγ-ray spectroscopy experiments 被引量:2
3
作者 Xing-Chi Han Shuo Wang +5 位作者 Hong-Yi Wu Zhi-Huan Li Guo-Zhu Shi Ruo-Fu Chen Yue-Zhao Zhang Shou-Yu Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期32-39,共8页
A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam γ-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors,... A particle detector array designed for light-charged particles, known as the CsI-bowl, was built for exit channel selection for in-beam γ-ray spectroscopy experiments. This device is composed of 64 CsI(Tl) detectors, organized in a structure reminiscent of a tea-bowl. High quantum efficiency photodiodes, characterized by their minimal mass, were employed to collect scintillation light. Its design, construction, particle identification resolution, and its effectiveness in relation to exit channel selection are described in this paper. In source tests, the optimal figure of merit for the identification of α-particles and γ-rays using the charge comparison method was found to be 3.3 and 12.1 for CsI detectors coupled to photodiodes and avalanche photodiodes, respectively. The CsI-bowl demonstrated effectiveness in identifying particles, specifically the emission of protons and α-particles in the58Ni(19F, xpyn) fusion–evaporation reaction, thereby enabling the selection of the desired exit channels. 展开更多
关键词 Light charged particle detector array particle identification Charge comparison method
在线阅读 下载PDF
Effect of Au/Ni/4H–SiC Schottky junction thermal stability on performance of alpha particle detection 被引量:1
4
作者 Xin Ye Xiao-Chuan Xia +5 位作者 Hong-Wei Liang Zhuo Li He-Qiu Zhang Guo-Tong Du Xing-Zhu Cui Xiao-Hua Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期482-486,共5页
Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and ... Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500 ℃, the two nickel silicides (i.e., Ni31Sil2 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Sil2 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600 ℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃. 展开更多
关键词 alpha particle detector silicon carbide thermal stability Schottky barrier
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部