Natural convection heat transfer from annular finned tubes was studied numerically. Effects of fin spacing, temperature difference and tube diameter on flow pathlines and local heat transfer were also studied. It was ...Natural convection heat transfer from annular finned tubes was studied numerically. Effects of fin spacing, temperature difference and tube diameter on flow pathlines and local heat transfer were also studied. It was shown that pathlines remain mostly circular for different geometries. Moreover, the contributions of fin periphery, fin side and bare tube to heat transfer were specified. It was shown that the heat transfer per unit area of fin periphery can be several times that of other parts. Moreover, in higher finspacing, the heat transfer from the bare tube can be more important than fin sides.展开更多
Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab a...Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab.展开更多
This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests we...This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests were performed using a rigid spherical indenter.Next,stiffened-ring cylindrical shells with various structural size parameters were simulated using ABAQUS software.The relationships between the impact force,deformation displacement,and rebound velocity were established,on the basis of impact mechanics theory and simulation results.It derived fitting functions to analyse the relationship between the maximum load and maximum displacement of ring-stiffened cylindrical shell under dynamic mass impact.Based on the validation of the simulation model,the fitting function data were compared with the simulation results,and the functions showed a good accuracy.Besides,the parameters,mass ratio and stiffened-ring mass ratio were used to reflect the effect of the mass change in the ring-stiffened cylindrical shell.Furthermore,parametric studies on ring-stiffened cylindrical shell models were conducted to analyse the progressive impact responses.展开更多
文摘Natural convection heat transfer from annular finned tubes was studied numerically. Effects of fin spacing, temperature difference and tube diameter on flow pathlines and local heat transfer were also studied. It was shown that pathlines remain mostly circular for different geometries. Moreover, the contributions of fin periphery, fin side and bare tube to heat transfer were specified. It was shown that the heat transfer per unit area of fin periphery can be several times that of other parts. Moreover, in higher finspacing, the heat transfer from the bare tube can be more important than fin sides.
基金The supports from the Natural Science Research of Jiangsu Higher Education Institutions of China(21KJB580001)the National Natural Science Foundation of China(Grant No.52209162,51979152)+2 种基金Educational Commission of Hubei Province of China(T2020005)Young Top-notch Talent Cultivation Program of Hubei ProvinceJiangxi Provincial Natural Science Foundation(20212BAB214044)。
文摘Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab.
基金supported by the National Natural Science Foundation of China(Grant No.51508123,named“Study on blast response of floating roof storage tank in material point method”)Natural Science Foundation of Heilongjiang Province,China(LH2019A008)to provide fund for conducting experiments and research.The authors would like to acknowledge Professor Wei Wang in Harbin Institute of Technology for instructions and help in experiment design.
文摘This study focuses on the effect of lateral mass impact on ring-stiffened thin-walled cylindrical shell.Cylindrical shells were fabricated to validate the numerical modeling and analytical techniques,and drop tests were performed using a rigid spherical indenter.Next,stiffened-ring cylindrical shells with various structural size parameters were simulated using ABAQUS software.The relationships between the impact force,deformation displacement,and rebound velocity were established,on the basis of impact mechanics theory and simulation results.It derived fitting functions to analyse the relationship between the maximum load and maximum displacement of ring-stiffened cylindrical shell under dynamic mass impact.Based on the validation of the simulation model,the fitting function data were compared with the simulation results,and the functions showed a good accuracy.Besides,the parameters,mass ratio and stiffened-ring mass ratio were used to reflect the effect of the mass change in the ring-stiffened cylindrical shell.Furthermore,parametric studies on ring-stiffened cylindrical shell models were conducted to analyse the progressive impact responses.